References
- Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006;100:175-86. https://doi.org/10.1254/jphs.CRJ05010X
- Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342. https://doi.org/10.5142/jgr.2012.36.4.342
- Zheng SD, Wu HJ, Wu DL. Roles and mechanisms of ginseng in protecting heart. Chin J Integr Med 2012;18:548-55. https://doi.org/10.1007/s11655-012-1148-1
- Xie JT, Mehendale SR, Li X, Quigg R, Wang X, Wang CZ, Wu JA, Aung HH, ARue P, Bell GI, et al. Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim Biophys Acta 2005;1740:319-25. https://doi.org/10.1016/j.bbadis.2004.10.010
- Jung HJ, Choi H, Lim HW, Shin D, Kim H, Kwon B, Lee JE, Park EH, Lim CJ. Enhancement of anti-inflammatory and antinociceptive actions of red ginseng extract by fermentation. J Pharm Pharmacol 2012;64:756-62. https://doi.org/10.1111/j.2042-7158.2012.01460.x
- Wong AS, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 2015;32:256-72. https://doi.org/10.1039/C4NP00080C
- Nguyen VB, Park HS, Lee SC, Lee J, Park JY, Yang TJ. Authentication markers for five major Panax species developed via comparative analysis of complete chloroplast genome sequences. J Agric Food Chem 2017;65:6298-306. https://doi.org/10.1021/acs.jafc.7b00925
- Chan T, But P, Cheng S, Kwok I, Lau F, Xu H. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Anal Chem 2000;72:1281-7. https://doi.org/10.1021/ac990819z
- Yuk J, McIntyre KL, Fischer C, Hicks J, Colson KL, Lui E, Brown D, Arnason JT. Distinguishing Ontario ginseng landraces and ginseng species using NMRbased metabolomics. Anal Bioanal Chem 2013;405:4499-509. https://doi.org/10.1007/s00216-012-6582-6
- Wang X, Sakuma T, Asafu-Adjaye E, Shiu GK. Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS. Anal Chem 1999;71:1579-84. https://doi.org/10.1021/ac980890p
- Yang W, Qiao X, Li K, Fan J, Bo T, Guo DA, Ye M. Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm Sin B 2016;6:568-75. https://doi.org/10.1016/j.apsb.2016.05.005
- Shi W, Wang Y, Li J, Zhang H, Ding L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 2007;102:664-8. https://doi.org/10.1016/j.foodchem.2006.05.053
- Oh JY, Kim YJ, Jang MG, Joo SC, Kwon WS, Kim SY, Jung SK, Yang DC. Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. J Ginseng Res 2014;38:270-7. https://doi.org/10.1016/j.jgr.2014.04.004
- Lee YS, Park HS, Lee DK, Jayakodi M, Kim NH, Koo HJ, Lee SC, Kim YJ, Kwon SW, Yang TJ. Integrated transcriptomic and metabolomic analysis of five Panax ginseng cultivars reveals the dynamics of ginsenoside biosynthesis. Front Plant Sci 2017;8:1048. https://doi.org/10.3389/fpls.2017.01048
- Xiao D, Yue H, Xiu Y, Sun X, Wang Y, Liu S. Accumulation characteristics and correlation analysis of five ginsenosides with different cultivation ages from different regions. J Ginseng Res 2015;39:338-44. https://doi.org/10.1016/j.jgr.2015.03.004
- Kim YJ, Jeon JN, Jang MG, Oh JY, Kwon WS, Jung SK, Yang DC. Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. J Ginseng Res 2014;38:66-72. https://doi.org/10.1016/j.jgr.2013.11.001
- Jiang M, Liu J, Quan X, Quan L, Wu S. Different chilling stresses stimulated the accumulation of different types of ginsenosides in Panax ginseng cells. Acta Physiol Plant 2016;38:210. https://doi.org/10.1007/s11738-016-2210-y
- Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, Depamphilis CW. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Mol Biol Evol 2005;22:1948-63. https://doi.org/10.1093/molbev/msi191
- Kim K, Nguyen VB, Dong JZ, Wang Y, Park JY, Lee SC, Yang TJ. Evolution of the Araliaceae family inferred from complete chloroplast genomes and 45S nrDNAs of 10 Panax-related species. Sci Rep 2017;7:4917. https://doi.org/10.1038/s41598-017-05218-y
- Artyukova E, Kozyrenko M, Reunova G, Muzarok T, Zhuravlev YN. RAPD analysis of genome variability of planted ginseng, Panax ginseng. Mol Biol 2000;34:297-302. https://doi.org/10.1007/bf02759655
- Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, Cho EG, Park YJ. Development and characterization of new microsatellite markers for ginseng (Panax ginseng CA Meyer). Conserv Genet 2007;8:1507-9. https://doi.org/10.1007/s10592-007-9284-4
- Kim NH, Choi HI, Ahn IO, Yang TJ. EST-SSR marker sets for practical authentication of all nine registered ginseng cultivars in Korea. J Ginseng Res 2012;36:298. https://doi.org/10.5142/jgr.2012.36.3.298
- Choi HI, Kim NH, Kim JH, Choi BS, Ahn IO, Lee JS, Yang TJ. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res 2011;35:399. https://doi.org/10.5142/jgr.2011.35.4.399
- Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to genome. Biol Rev 2015;90:157-66. https://doi.org/10.1111/brv.12104
- Kim K, Lee SC, Lee J, Lee HO, Joh HJ, Kim NH, Park HS, Yang TJ. Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PloS One 2015;10. e0117159. https://doi.org/10.1371/journal.pone.0117159
- Jung J, Kim KH, Yang K, Bang KH, Yang TJ. Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products. J Ginseng Res 2014;38:123-9. https://doi.org/10.1016/j.jgr.2013.11.017
- Chen X, Liao B, Song J, Pang X, Han J, Chen S. A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding. Gene 2013;530:39-43. https://doi.org/10.1016/j.gene.2013.07.097
- Kim NH, Jayakodi M, Lee SC, Choi BS, Jang W, Lee J, Kim HH, Waminal NE, Lakshmana M, Binh NV, et al. Genome and evolution of the shade-requiring medicinal herb Panax ginseng. Plant Biotechnol J, 2018. https://doi.org/10.1111/pbi.12926.
- Kim K, Lee SC, Lee J, Yu Y, Yang K, Choi BS, Koh HJ, Waminal NE, Choi HI, Kim NH, et al. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 2015;5:15655. https://doi.org/10.1038/srep15655
- Allen G, Flores-Vergara M, Krasynanski S, Kumar S, Thompson W. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 2006;1:2320-5. https://doi.org/10.1038/nprot.2006.384
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
- Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. Artemis: sequence visualization and annotation. Bioinformatics 2000;16:944-5. https://doi.org/10.1093/bioinformatics/16.10.944
- Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res 2009;19:1639-45. https://doi.org/10.1101/gr.092759.109
- Cui Y, Qin S, Jiang P. Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker. PloS One 2014;9:e98607. https://doi.org/10.1371/journal.pone.0098607
- Dong W, Liu H, Xu C, Zuo Y, Chen Z, Zhou S. A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs. BMC Genetics 2014;15:138. https://doi.org/10.1186/s12863-014-0138-z
- Li R, Ma PF, Wen J, Yi TS. Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications. PloS One 2013;8:e78568. https://doi.org/10.1371/journal.pone.0078568
- Huang H, Shi C, Liu Y, Mao SY, Gao LZ. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 2014;14:151. https://doi.org/10.1186/1471-2148-14-151
- Cho KS, Yun BK, Yoon YH, Hong SY, Mekapogu M, Kim KH, Yang TJ. Complete chloroplast genome sequence of Tartary Buckwheat (Fagopyrum tataricum) and comparative analysis with Common Buckwheat (F. esculentum). PloS One 2015;10. e0125332. https://doi.org/10.1371/journal.pone.0125332
- Court WE. Ginseng: the genus Panax. Taylor & Francis E-Library; 2006. p. 15.
- Freeling M, Thomas BC. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 2006;16:805-14. https://doi.org/10.1101/gr.3681406
- Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Wall PK, Soltis PS. Polyploidy and angiosperm diversification. Am J Bot 2009;96:336-48. https://doi.org/10.3732/ajb.0800079
- Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci 2009;106:13875-9. https://doi.org/10.1073/pnas.0811575106
- Kim NH, Choi HI, Kim KH, Jang W, Yang TJ. Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tagesimple sequence repeat bands in Panax ginseng Meyer. J Ginseng Res 2014;38:130-5. https://doi.org/10.1016/j.jgr.2013.12.005
- Choi HI, Kim NH, Lee J, Choi BS, Do Kim K, Park JY, Lee SC, Yang TJ. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags. Genet Resour Crop Evol 2013;60:1377-87. https://doi.org/10.1007/s10722-012-9926-3
- Shi FX, Li MR, Li YL, Jiang P, Zhang C, Pan YZ, Liu B, Xiao HX, Li LF. The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae). BMC Plant Biol 2015;15:297. https://doi.org/10.1186/s12870-015-0669-0
- Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 2004;5:123. https://doi.org/10.1038/nrg1271
- Kleine T, Maier UG, Leister D. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 2009;60:115-38. https://doi.org/10.1146/annurev.arplant.043008.092119
- Park S, Ruhlman TA, Sabir JS, Mutwakil MH, Baeshen MN, Sabir MJ, Baeshen NA, Jansen RK. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids. BMC Genomics 2014;15:405. https://doi.org/10.1186/1471-2164-15-405
- Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 2010;6. e1000834. https://doi.org/10.1371/journal.pgen.1000834
- Smith DR, Crosby K, Lee RW. Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol 2011;3:365-71. https://doi.org/10.1093/gbe/evr001
- Gui S, Wu Z, Zhang H, Zheng Y, Zhu Z, Liang D, Ding Y. The mitochondrial genome map of Nelumbo nucifera reveals ancient evolutionary features. Sci Rep 2016;6:30158. https://doi.org/10.1038/srep30158
- Zuo Y, Chen Z, Kondo K, Funamoto T, Wen J, Zhou S. DNA barcoding of Panax species. Planta Med 2011;77:182. https://doi.org/10.1055/s-0030-1250166
- Ngan F, Shaw P, But P, Wang J. Molecular authentication of Panax species. Phytochem 1999;50:787-91. https://doi.org/10.1016/S0031-9422(98)00606-2
Cited by
- The complete chloroplast genome sequence of an invasive plant Lonicera Maackii (Caprifoliaceae) vol.4, pp.1, 2020, https://doi.org/10.1080/23802359.2018.1524722
- Two complete chloroplast genome sequences and intra-species diversity for Rehmannia glutinosa (Orobanchaceae) vol.4, pp.1, 2020, https://doi.org/10.1080/23802359.2018.1545529
- Dynamic Chloroplast Genome Rearrangement and DNA Barcoding for Three Apiaceae Species Known as the Medicinal Herb “Bang-Poong” vol.20, pp.9, 2020, https://doi.org/10.3390/ijms20092196
- Comparative Analysis of two Sugarcane Ancestors Saccharum officinarum and S. spontaneum based on Complete Chloroplast Genome Sequences and Photosynthetic Ability in Cold Stress vol.20, pp.15, 2020, https://doi.org/10.3390/ijms20153828
- Development of novel Quercus rubra chloroplast genome CAPS markers for haplotype identification vol.69, pp.1, 2020, https://doi.org/10.2478/sg-2020-0011
- Characterization of Chloroplast Genomes From Two Salvia Medicinal Plants and Gene Transfer Among Their Mitochondrial and Chloroplast Genomes vol.11, 2020, https://doi.org/10.3389/fgene.2020.574962
- Comparative analyses of chloroplast genomes of Theobroma cacao and Theobroma grandiflorum vol.75, pp.5, 2020, https://doi.org/10.2478/s11756-019-00388-8
- Comparative Survey of Morphological Variations and Plastid Genome Sequencing Reveals Phylogenetic Divergence between Four Endemic Ilex Species vol.11, pp.9, 2020, https://doi.org/10.3390/f11090964
- Complete Mitochondrial Genome and a Set of 10 Novel Kompetitive Allele-Specific PCR Markers in Ginseng (Panax ginseng C. A. Mey.) vol.10, pp.12, 2020, https://doi.org/10.3390/agronomy10121868
- Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes vol.9, 2020, https://doi.org/10.7717/peerj.10774
- Foliose Ulva Species Show Considerable Inter‐Specific Genetic Diversity, Low Intra‐Specific Genetic Variation, and the Rare Occurrence of Inter‐Specific Hybrids in the Wild vol.57, pp.1, 2020, https://doi.org/10.1111/jpy.13079
- Generation of Chloroplast Molecular Markers to Differentiate Sophora toromiro and Its Hybrids as a First Approach to Its Reintroduction in Rapa Nui (Easter Island) vol.10, pp.2, 2020, https://doi.org/10.3390/plants10020342
- Characterization of the complete chloroplast genome of China Viburnum burejaeticum Regel et Herd and intra-species diversity vol.6, pp.4, 2020, https://doi.org/10.1080/23802359.2021.1907810
- Diversity and authentication of Rubus accessions revealed by complete plastid genome and rDNA sequences vol.6, pp.4, 2020, https://doi.org/10.1080/23802359.2021.1911712
- Comparative plastome analysis of Blumea , with implications for genome evolution and phylogeny of Asteroideae vol.11, pp.12, 2020, https://doi.org/10.1002/ece3.7614
- DNA barcoding: a modern age tool for detection of adulteration in food vol.41, pp.5, 2021, https://doi.org/10.1080/07388551.2021.1874279
- Development of Hydrolysis Probe-Based qPCR Assays for Panax ginseng and Panax quinquefolius for Detection of Adulteration in Ginseng Herbal Products vol.10, pp.11, 2021, https://doi.org/10.3390/foods10112705
- Phylogenetic analysis and development of molecular markers for five medicinal Alpinia species based on complete plastome sequences vol.21, pp.1, 2021, https://doi.org/10.1186/s12870-021-03204-1