DOI QR코드

DOI QR Code

Development of RAPD-SCAR Molecular Marker Related to Seed-hair Characteristic in Carrot

당근(Daucus carota var. sativa) 종자모 형질 관련 RAPD-SCAR 분자표지 개발

  • Shim, Eun-Jo (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Park, Sung-Kwan (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Oh, Gyu-Dong (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Jun, Sang-Jin (Breeding Research Institute, Carrotop Seed Co.) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyung Hee University)
  • 심은조 (경희대학교 원예생명공학과) ;
  • 박성관 (경희대학교 원예생명공학과) ;
  • 오규동 (경희대학교 원예생명공학과) ;
  • 전상진 ((주)캐로톱씨드 육종연구소) ;
  • 박영두 (경희대학교 원예생명공학과)
  • Received : 2013.07.03
  • Accepted : 2013.07.24
  • Published : 2013.12.31

Abstract

Mechanical hair removal of carrot seed causes seed injuries and suppresses the germination in carrot cultivation. This study was performed to develop molecular markers for breeding high quality cultivars with short-hair seed. To meet this objective, random amplified polymorphic DNA (RAPD)-sequence characterized amplified region (SCAR) markers specifically linked to seed-hair characteristic were identified using CT-SMR 616 OP 389-1 line with short-haired seed and CT-SMR 616 OP 616-33 line with long-haired seed, bred by self-pollination for 6 years from 2008 to 2013, as parents. After seed hair lengths of these lines were analyzed using microscope, next generations were advanced and compared with the molecular markers polymorphism. From RAPD analysis using fixed lines in 2011, twelve RAPD primers showing polymorphic bands specific between the two lines were identified from 80 random primers. To develop RAPD-SACR marker, SCAR primers were designed based on sequence analysis of these specific RAPD bands and more than three combinations of primers were tested. As a result, it was found that the $SCA2_{1.2}$ amplified single polymorphic band from short-haired seed line. To confirm this result, $SCA2_{1.2}$ marker was retested by applying to the 2012 and 2013 progenies. Finally, it was concluded that the developed $SCA2_{1.2}$ marker distinguished short-haired line from long-haired seed line. Therefore, SCAR marker, $SCA2_{1.2}$ is expected to be utilized for breeding of the short-haired seed cultivars.

당근의 기계적인 제모 시 발생하는 종자의 손실과 발아 시의 문제점을 개선한, 고품질의 당근 종자 생산을 위한 단모종자 당근 품종 육성에 이용할 분자표지를 개발하기 위하여 본 연구를 수행하였다. 본 연구에서는 2008년도부터 2013년도까지 단모종자 표현형 CT-SMR 616 OP 389-1 개체와 장모종자 표현형 CT-SMR 616-33 개체를 자가수분하여 세대 진전된 당근 계통들을 종자모 형질 관련 RAPD-SCAR 분자표지를 개발하는데 이용하였다. 이들 계통의 종자모 길이를 현미경을 이용하여 분석하였으며, 분석된 결과를 바탕으로 계통을 세대진전 시켜, 분자표지 다형성과도 비교분석하였다. 분자 표지 개발을 위하여 세대가 고정되었다고 판단되는 2011년 계통을 대상으로 80개의 random primer를 이용한 RAPD 분석을 통해 12개의 개체간 뚜렷한 차이를 보이는 종자모 형질 관련 특이적 band를 확인하였다. RAPD-SCAR 분자표지 개발을 위해 확인된 이들 특이적 band의 염기서열 분석을 통해 SCAR primer를 작성하였으며 각 SCAR primer는 24-28mer 크기로 3조합 이상 작성하였다. 분석 결과 작성된 SCAR primer 중 $SCA2_{1.2}$가 단모종자 표현형 계통에서만 특이적으로 증폭되는 것을 확인하였다. 이 $SCA2_{1.2}$ 분자표지의 정확성을 검증하기 위해 2012년도 계통과 2013년도 계통을 이용하여 재검증하였으며, 그 결과 개발된 SCAR 분자표지는 단모종자와 장모종자 계통을 구분할 수 있는 충분한 다형성을 제공하였다. 따라서 본 연구에서 개발된 SCAR 분자표지, $SCA2_{1.2}$는 당근의 단모종자 품종 육성 연구에 충분히 활용가능 할 것으로 기대된다.

Keywords

References

  1. Agarwal, M., N. Shrivastava, and H. Padh. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27:617-631. https://doi.org/10.1007/s00299-008-0507-z
  2. Ardiel, G.S., T.S. Grewal, P. Deberdt, B.G. Rossnagel, and G.J. Scoles. 2002. Inheritance of resistance to covered smut in barley and development of a tightly linked SCAR marker. Theor. Appl. Genet. 104:457-464. https://doi.org/10.1007/s001220100696
  3. Bajaj, K.L., G. Gurdeep, and B.S. Shkhiuja. 1980. Chemical composition and some plant characteristics in relation to quality of some promising cultivars of carrot (Daucus carota L.). Qual. Plant Foods Hum. Nutr. 30:97-107. https://doi.org/10.1007/BF01099047
  4. Buttery, R.G., R.M. Seifert, D.G. Guadagni, D.R. Black, and L.C. Ling. 1968. Characterization of some volatile constituents of carrots. J. Agric. Food Chem. 16:1009-1015. https://doi.org/10.1021/jf60160a012
  5. Cutler, R.W., R. Chundet, T. Handa, and S. Anuntalabhochai. 2006. Development of sequence characterized DNA markers linked to a temperature dependence for flower induction in lychee (Litchi chinensis Sonn.) cultivars. Sci. Hort. 107:264-270. https://doi.org/10.1016/j.scienta.2005.08.005
  6. Demeke, T., D.R. Lynch, L.M. Kawchuk, G.C. Kozub, and J.D. Armstrong. 1996. Genetic diversity of potato determined by random amplified polymorphic DNA analysis. Plant Cell Rep. 15:662-667. https://doi.org/10.1007/BF00231920
  7. Deng, Z., S. Xiao, S. Huang, G. Frederick, and J. Gmitter. 1997. Development and characterization of SCAR markers linked to the Citrus tristeza virus resistance gene from Poncirus trifoliate. Genome 40:697-704. https://doi.org/10.1139/g97-792
  8. Menon, A.R.S. and Y. Dave. 1989. Micromorphology of hairs and spines on ovary and fruit of Daucus carota L. var. sativa (the cultivated carrot). Bot. Mat. Tokyo 102:503-509. https://doi.org/10.1007/BF02488432
  9. Negi, M.S., M. Devic, M. Delsenny, and M. Lakshmikumaran. 2000. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor. Appl. Genet. 101:146-152. https://doi.org/10.1007/s001220051463
  10. Nieuwhof, M. and F. Garritsen. 1984. Inheritance of spine formation on seeds of carrot (Daucus carota L.) Euphytica 33:75-80. https://doi.org/10.1007/BF00022752
  11. Lee, S.W. and J.H. Kim. 2003. Genetic relationship analysis of melons (Cucumis melo) germplasm by RAPD method. J. Kor. Soc. Hort. Sci. 44:307-313.
  12. Paran, I. and R.W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85:985-993.
  13. Park, Y., M.S. Cho, Y.S. Kim, and S.G. Park. 2002. A promising carrot mutant, spineless seeds. J. Kor. Soc. Hort. Sci. 43:707-709.
  14. Peto, R., R. Doll, J.D. Buckley, and M.B. Sporn. 1981. Can dietary ${\beta}$-carotene materially reduce human cancer rates? Nature 290:201-208. https://doi.org/10.1038/290201a0
  15. Russell. J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell, and R. Waugh. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 95:714-722. https://doi.org/10.1007/s001220050617
  16. Senti, F.R. and R.L. Rezek. 1975. Nutrient levels in horticultural crops. Hortscience 10:243.
  17. Tatineni, V., R.G. Cantrell, and D.D. Davis. 1996. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci. 36:186-192. https://doi.org/10.2135/cropsci1996.0011183X003600010033x
  18. Vivek, B.S. and P.W. Simon. 1998. Genetic relationships diversity in carrot and other Daucus taxa based on nuclear restriction fragment length polymorphisms. J. Amer. Soc. Hort. Sci. 123:1053-1057.
  19. Yamamoto, T., A. Nishikawa, and K. Oeda. 1994. DNA polymorphisms in Oryza sativa L. and Lactuca sativa L. amplified by arbitrary primed PCR. Euphytica 78:143-148.