• Title/Summary/Keyword: DGGE (Denaturing Gel Gradient Electrophoresis)

Search Result 167, Processing Time 0.025 seconds

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

Comparison of Bacterial Community Changes in Fermenting Kimchi at Two Different Temperatures Using a Denaturing Gradient Gel Electrophoresis Analysis

  • Yeun, Hong;Yang, Hee-Seok;Chang, Hae-Choon;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique followed by sequencing of the 16S rDNA fragments eluted from the bands of interest on denaturing gradient gels was used to monitor changes in the bacterial microflora of two commercial kimchi, salted cabbage, and ingredient mix samples during 30 days of fermentation at $4^{\circ}C$ and $10^{\circ}C$. Leuconostoc (Lc.) was the dominant lactic acid bacteria (LAB) over Lactobacillus (Lb.) species at $4^{\circ}C$. Weissella confusa was detected in the ingredient mix and also in kimchi samples throughout fermentation in both samples at $4^{\circ}C$ and $10^{\circ}C$. Lc. gelidum was detected as the dominant LAB at $4^{\circ}C$ in both samples. The temperature affected the LAB profile of kimchi by varing the pH, which was primarily caused by the temperature-dependent competition among different LAB species in kimchi. At $4^{\circ}C$, the sample variations in pH and titratable acidity were more conspicuous owing to the delayed growth of LAB. Temperature affected only initial decreases in pH and initial increases in viable cell counts, but affected both the initial increases and final values of titratable acidity. The initial microflora in the kimchi sample was probably determined by the microflora of the ingredient mix, not by that of the salted cabbage. The microbial distributions in the samples used in this study resembled across the different kimchi samples and the different fermentation temperatures as the numbers of LAB increased and titratable acidity decreased.

Diversity of Marine Microbes by PCR-DGGE (PCR-DGGE를 이용한 해양미생물의 다양성 조사)

  • Kim, Yeong-Jin;Cho, Hyo-Jin;Yu, Sun-Nyoung;Kim, Kwang-Youn;Kim, Hyeung-Rak;Ahn, Soon-Cheol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.356-361
    • /
    • 2007
  • Recently, the development of various culture-independent identification techniques for environmental microbes has greatly enhanced our knowledge of microbial diversity. In particular, denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments, generated using the polymerase chain reaction (PCR) is frequently used to examine the diversity of environmental bacterial populations. This method consists of direct extraction of the environmental DNA, amplification of the 200-600 bp 16S rDNA fragments with universal primers, and separation of the fragments according to their melting point on a denaturing gradient gel. In this study, we investigated the seaside microbial community in coastal areas of Busan, Korea, using culture-independent techniques. First, marine genomic DNA was extracted from seawater samples collected at Songjeong, Gwangahn, and Songdo Beaches. Then, PCR was used to amplify the bacterial 16S rDNA using universal primers, and DGGE was used to separate the amplified 500 bp 16S rDNA fragments. Finally, the tested 16S rDNA genes were further analyzed by sequencing. Based on these experiments, we found that DGGE analysis clearly showed variation among the regional groups. It can be used to monitor rapid changes in the bacterial diversity of various environments. In addition, the sequence analysis indicated the existence of many unculturable bacteria, in addition to Arcobacter, Pseudoaltermonas, and Vibrio species.

Analysis of the Seasonal Change in Attached Algae and Microbial Community Structure in Sediment Basin Trough of Water Treatment Plant By Using Quinone Profile and PCR-DGGE (Quinone profile과 PCR-DGGE를 이용한 정수장 침전지에서의 부착조류 및 미생물군집의 계절적 변화해석)

  • Yu, Hyun-Sun;Lim, Byung-Ran;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.461-467
    • /
    • 2006
  • The seasonal change in attached algae and microbial community structure at sedimentation basin of water treatment plant was investigated by using quinone profiles and denaturing gel gradient electrophoresis (DGGE). The photosynthetic bacteria and algae contains PQ-9 and VK-1 as major quinone are major component of the total quinone fraction in attached algae and microorganisms on sedimentation basin trough. The microorganisms containing menaquinones appear to be sensitivity to the change in temperature than those containing ubiquinones. The plot of the mole fraction of dominant quinone species ($f_d$) to the DQ values showed higher sensitivity to the seasonal change in the microbial community structure. The results indicated that quinone and DGGE are useful tool for the evaluation of the changes in the microbial community structure.

Analysis of Microbial Diversity in Nuruk Using PCR-DGGE (PCR-DGGE를 이용한 누룩에서의 미생물 다양성 분석)

  • Kwon, Seung-Jik;Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.110-116
    • /
    • 2012
  • Nuruk plays a significant role in the flavor and quality of Takju and Yakju, which are produced through saccharification and alcohol fermentation by various microorganisms. In this study, we identified microbial strains isolated from a plate count and PCR-denaturing gradient gel electrophoresis (DGGE) analysis targeting the 16S and 28S rRNA genes, in order to characterize bacterial and fungal diversity in Sansung Nuruk. The numbers of bacteria and fungi in Nuruk were $1.5{\times}10^9$ CFU/g and $2.2{\tims}10^8$ CFU/g, respectively. The 16S rRNA gene sequence indicated that the predominant bacteria in the isolates and PCR-DGGE profile of Nuruk were Kocuria spp., Pantoea spp., Lactobacillus spp., Pediococcus spp., Weissella spp., Staphylococcus spp., endophytic bacterium, uncultured Gamma-proteobacteria, uncultured Cyanobacteria, and Actinobacteria. Dominant bacteria from the PCR-DGGE profile were Pediococcous pentosaceus and uncultured Cyanobacteria. The 28S rRNA gene sequence indicated the predominant fungi in the isolates and PCR-DGGE profile to be Trichomonascus spp. Pichia spp., Torulaspora spp., Wickerhamomyces spp., Sacharomycopsis spp., Lichtheimia spp., Mucor spp., Rhizopus spp. Aspergillus spp., and Cladosporium spp. Dominant fungi from the PCR-DGGE profile were Pichia kudriavzevii and Aspergillus oryzae. The PCR-DGGE technique was used for the first time in this study to assess a microbial community in Nuruk and proved to be an effective protocol for profiling microbial diversity.

Analysis of Microbial Community During the Anaerobic Dechlorination of Perchloroethylene and Trichloroethylene (Perchloroethylene과 Trichloroethylene의 혐기적 탈염소화 및 미생물 군집 분석)

  • Lee Jae-Won;Kim Byung-Hyuk;Ahn Chi-Yong;Kim Hee-Sik;Yoon Byung-Dae;Oh Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.281-286
    • /
    • 2005
  • In this study, the anaerobic enrichment cultivation was performed with the sediments and the dredged soils from the cities of Ulsan, Masan, Yeosu, Gwangyang, Ansan and Seongnam. Acetate as an electron donor and PCE (perchloroethylene) or TCE (trichloroethylene) as an electron acceptor were injected into the serum bottle with an anaerobic medium. After the incubation of 12 weeks, the removal efficiency of PCE was highest at $70\%$ in the treatment with the sediment of Ulsan. Also, the bacterial community structure was analyzed by D-DGGE (double denatured gradient gel electrophoresis) through PCR-based 16S rDNA approaches. The dominant species id the anaerobic enrichment were found to belong to the genus of Desulfovibrio.

Monitoring of Microbial Diversity and Activity During Bioremediation of Crude Oil-Contaminated Soil with Different Treatments

  • Baek, Kyung-Hwa;Yoon, Byung-Dae;Kim, Byung-Hyuk;Cho, Dae-Hyun;Lee, In-Sook;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • The present study compared the microbial diversity and activity during the application of various bioremediation processes to crude oil-contaminated soil. Five different treatments, including natural attenuation (NA), biostimulation (BS), biosurfactant addition (BE), bioaugmentation (BA), and a combined treatment (CT) of biostimulation, biosurfactant addition, and bioaugmentation, were used to analyze the degradation rate and microbial communities. After 120 days, the level of remaining hydrocarbons after all the treatments was similar, however, the highest rate (k) of total petroleum hydrocarbon (TPH) degradation was observed with the CT treatment (P<0.05). The total bacterial counts increased during the first 2 weeks with all the treatments, and then remained stable. The bacterial communities and alkane monooxygenase gene fragment, alkB, were compared by denaturing gradient gel electrophoresis (DGGE). The DGGE analyses of the BA and CT treatments, which included Nocardia sp. H17-1, revealed a simple dominant population structure, compared with the other treatments. The Shannon-Weaver diversity index (H') and Simpson dominance index (D), calculated from the DGGE profiles using 16S rDNA, showed considerable qualitative differences in the community structure before and after the bioremediation treatment as well as between treatment conditions.

ENHANCED BIOREMEDIATION AND MODIFIED BACTERIAL COMMUNITY STRUCTURE BY BARNYARD GRASS IN DIESEL-CONTAMINATED SOIL

  • Kim, Jai-Soo;Min, Kyung-Ah;Cho, Kyung-Suk;Lee, In-Sook
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • Phytoremediation has been used effectively for the biodegradation of oil-based contaminants, including diesel, by the stimulation of soil microbes near plant roots (rhizosphere). However, the technique has rarely been assessed for itsinfluence on soil microbial properties such as population, community structure, and diversity. In this study, the removal efficiency and characteristics of rhizobacteria for phytoremediation of diesel-contaminated soils were assessed using barnyard grass (Echinochloa crusgalli). The concentration of spiked diesel for treatments was around $6000\;mg\;kg^{-1}$. Diesel removal efficiencies reached 100% in rhizosphere soils, 76% in planted bulk soils, and 62% in unplanted bulk soils after 3weeks stabilization and 2 months growth(control, no microbial activity: 32%). The highest populations of culturable soil bacteria ($5.89{\times}10^8$ per g soil) and culturable hydrocarbon-degraders($5.65{\times}10^6$ per g soil) were found in diesel-contaminated rhizosphere soil, also yielding the highest microbial dehydrogenase. This suggests that the populations of soil bacteria, including hydrocarbon-degraders, were significantly increased by a synergistic rhizosphere + diesel effect. The diesel treatment alone resulted in negative population growth. In addition, we investigated the bacterial community structures of each soil sample based on DGGE (Denaturing Gel Gradient Electrophoresis) band patterns. Bacterial community structure was most influenced by the presence of diesel contamination (76.92% dissimilarity to the control) and by a diesel + rhizosphere treatment (65.62% dissimilarity), and least influenced by the rhizosphere treatment alone (48.15% dissimilarity). Based on the number of distinct DGGE bands, the bacterial diversity decreased with diesel treatment, but kept constant in the rhizosphere treatment. The rhizosphere thus positively influenced bacterial population density in diesel-contaminated soil, resulting in high removal efficiency of diesel.

Comparison of Faecal Microbial Community of Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire Sows

  • Yang, Lina;Bian, Gaorui;Su, Yong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.898-906
    • /
    • 2014
  • The objective of this study was to investigate differences in the faecal microbial composition among Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire sows and to explore the possible link of the pig breed with the gut microbial community. Among the sows, the Meishan, Landrace, Duroc, and Yorkshire sows were from the same breeding farm with the same feed. Fresh faeces were collected from three sows of each purebred breed for microbiota analysis and volatile fatty acid (VFA) determination. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that samples from Bama, Erhualian, and Xiaomeishan sows, which from different farms, were generally grouped in one cluster, with similarity higher than 67.2%, and those from Duroc, Landrace, and Yorkshire sows were grouped in another cluster. Principal component analysis of the DGGE profile showed that samples from the foreign breeds and the samples from the Chinese indigenous breeds were scattered in two different groups, irrespective of the farm origin. Faecal VFA concentrations were significantly affected by the pig breed. The proportion of acetate was higher in the Bama sows than in the other breeds. The real-time PCR analysis showed that 16S rRNA gene copies of total bacteria, Firmicutes and Bacteroidetes were significantly higher in the Bama sows compared to Xiaomeishan and Duroc sows. Both Meishan and Erhualian sows had higher numbers of total bacteria, Firmicutes, Bacteroidetes and sulphate-reducing bacteria as compared to Duroc sows. The results suggest that the pig breed affects the composition of gut microbiota. The microbial composition is different with different breeds, especially between overseas breeds (lean type) and Chinese breeds (relatively obese type).

Survival and Performance of Two Cellulose-Degrading Microbial Systems Inoculated into Wheat Straw-Amended Soil

  • Li, Peipei;Zhang, Dongdong;Wang, Xiaojuan;Wang, Xiaofen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.126-132
    • /
    • 2012
  • A cellulose-degrading composite microbial system containing a mixture of microbes was previously shown to demonstrate a high straw-degrading capacity. To estimate its potential utilization as an inoculant to accelerate straw biodegradation after returning straw to the field, two cellulose-degrading composite microbial systems named ADS3 and WSD5 were inoculated into wheat straw-amended soil in the laboratory. The microbial survival of the inoculant was confirmed by a denaturing gradient gel electrophoresis (DGGE) analysis, whereas the enhancement of straw degradation in soil was assessed by measuring the mineralization of the soil organic matter and the soil cellulase activity. The results indicated that most of the DGGE bands from ADS3 were detected after inoculation into straw-amended autoclaved soil, yet only certain bands from ADS3 and WSD5 were detected after inoculation into straw-amended non-autoclaved soil during five weeks of incubation; some bands were detected during the first two weeks after inoculation, and then disappeared in later stages. Organic matter mineralization was significantly higher in the soil inoculants ADS3 and WSD5 than in the uninoculated controls during the first week, yet the enhanced degradation did not persist during the subsequent incubation. Similar to the increase in soil organic matter, the cellulase activity also increased during the first week in the ADS3 and WSD5 treatments, yet decreased during the remainder of the incubation period. Thus, it was concluded that, although the survival and performance of the two inoculants did not persist in the soil, a significant enhancement of degradation was present during the early stage of incubation.