DOI QR코드

DOI QR Code

Comparison of Bacterial Community Changes in Fermenting Kimchi at Two Different Temperatures Using a Denaturing Gradient Gel Electrophoresis Analysis

  • Yeun, Hong (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Yang, Hee-Seok (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Chang, Hae-Choon (Department of Food and Nutrition, Chosun University) ;
  • Kim, Hae-Yeong (Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University)
  • Received : 2012.10.04
  • Accepted : 2012.11.21
  • Published : 2013.01.28

Abstract

A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique followed by sequencing of the 16S rDNA fragments eluted from the bands of interest on denaturing gradient gels was used to monitor changes in the bacterial microflora of two commercial kimchi, salted cabbage, and ingredient mix samples during 30 days of fermentation at $4^{\circ}C$ and $10^{\circ}C$. Leuconostoc (Lc.) was the dominant lactic acid bacteria (LAB) over Lactobacillus (Lb.) species at $4^{\circ}C$. Weissella confusa was detected in the ingredient mix and also in kimchi samples throughout fermentation in both samples at $4^{\circ}C$ and $10^{\circ}C$. Lc. gelidum was detected as the dominant LAB at $4^{\circ}C$ in both samples. The temperature affected the LAB profile of kimchi by varing the pH, which was primarily caused by the temperature-dependent competition among different LAB species in kimchi. At $4^{\circ}C$, the sample variations in pH and titratable acidity were more conspicuous owing to the delayed growth of LAB. Temperature affected only initial decreases in pH and initial increases in viable cell counts, but affected both the initial increases and final values of titratable acidity. The initial microflora in the kimchi sample was probably determined by the microflora of the ingredient mix, not by that of the salted cabbage. The microbial distributions in the samples used in this study resembled across the different kimchi samples and the different fermentation temperatures as the numbers of LAB increased and titratable acidity decreased.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST; a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Björkroth, K. J., P. Vandamme, and H. J. Korkeala. 1998. Identification and characterization of Leuconostoc carnosum, associated with production and spoilage of vacuum-packaged, sliced, cooked ham. Appl. Environ. Microbiol. 64: 3313-3319.
  3. Bjorkroth, K. J., R. Geisen, U. Schillinger, N. Weiss, P. De Vos, W. H. Holzapfel, et al. 2000. Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomatomarinated broiler meat strips packaged under modified-atmosphere conditions. Appl. Environ. Microbiol. 66: 3764-3772. https://doi.org/10.1128/AEM.66.9.3764-3772.2000
  4. Chang, H. W., K. H. Kim, Y. D. Nam, S. W. Roh, M. S. Kim, C. O. Jeon, and J. W. Bae. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126: 159-166. https://doi.org/10.1016/j.ijfoodmicro.2008.05.013
  5. Cho, J. H., D. Y. Lee, C. N. Yang, J. I. Jeon, J. H. Kim, and H. U. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267 https://doi.org/10.1111/j.1574-6968.2006.00186.x
  6. Chung, H. K., K. M. Yeo, and M. H. Kim. 1996. Kinetic modeling for quality prediction during kimchi fermentation. J. Food Sci. Nutr. 1: 41-45.
  7. Hamasaki, Y., M. Ayaki, H. Fuchu, M. Sugiyama, and H. Morita. 2003. Behavior of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Appl. Environ. Microbiol. 69: 3668-3671. https://doi.org/10.1128/AEM.69.6.3668-3671.2003
  8. Jung, J. Y., S. H. Lee, H. J. Lee, H. Y. Seo, W. S. Park, and C. O. Jeon. 2012. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 153: 378-387. https://doi.org/10.1016/j.ijfoodmicro.2011.11.030
  9. Jung, H. J., Y. Hong, H. S. Yang, H. C. Chang, and H. Y. Kim. 2012. Distribution of lactic acid bacteria in garlic (Allium sativum) and green onion (Allium fistulosum) using SDS-PAGE whole cell protein pattern comparison and 16S rRNA gene sequence analysis. 2012. Food Sci. Biotechnol. 21 [In Press].
  10. Kim, M. and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96. https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  11. Kim, M. H., S. T. Shim, Y. S. Kim, and K. H. Kyung. 2002. Diversity of leuconostocs on garlic surface, an extreme environment. J. Microbiol. Biotechnol. 12: 497-502.
  12. Kim, S. Y., K. S. Yoo, J. E. Kim, J. S. Kim, J. Y. Jung, Q. Jin, H. J. Eom, and N. S. Han. 2010. Diversity analysis of lactic acid bacteria in Korean rice wines by culture-independent method using PCR-denaturing gradient gel electrophoresis. Food Sci. Biotechnol. 19: 749-755. https://doi.org/10.1007/s10068-010-0105-z
  13. Kim, T. W., J. H. Lee, S. E. Kim, M. H. Park, H. C. Chang, and H. Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271. https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
  14. Kim, T. W., J. Y. Lee, H. S. Song, J. H. Park, G. E. Ji, and H. Y. Kim. 2004. Isolation and identification of Weissella kimchii from green onion by cell protein pattern analysis. J. Microbiol. Biotechnol. 14: 105-109.
  15. Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, et al. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635-642.
  16. Ku, K. H., K. O. Kang, and W. J. Kim. 1988. Some quality changes during fermentation of kimchi. Korean J. Food Sci. Technol. 20: 476-482.
  17. Lee, J. S., G. Y. Heo, J. W. Lee, Y. J. Oh, J. A. Park, Y. H. Park, et al. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150 https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
  18. Lee, M. J. and J. H. Lee. 2009. Detection of pediococci in kimchi using pediococci selective medium. Korean J. Microbiol. Biotechnol. 37: 238-242.
  19. Lee, S. H. and S. D. Kim. 1988. Effect of starters on fermentation of kimchi. J. Korean Soc. Food Nutr. 17: 342-347.
  20. Lee, Y. H. and I. W. Yang. 1970. Studies on the packaging and preservation of kimchi. J. Korean Agric. Chem. Soc. 13: 207-218
  21. Mheen, T. I. and T. W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450.
  22. Miller, K. M., T. J. Ming, A. D. Schulze, and R. E. Withler. 1999. Denaturing gradient gel electrophoresis (DGGE): A rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques 27: 1016-1018.
  23. Park, J. A., G. Y. Heo, J. S. Lee, Y. J. Oh, B. Y. Kim, T. I. Mheen, et al. 2003. Change of microbial communities in kimchi fermentation at low temperature. Korean J. Microbiol. 39: 45-50
  24. Park, J. M., J. H. Shin, D. W. Lee, J. C. Song, H. J. Suh, U. J. Chang, and J. M. Kim. 2010. Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 19: 541-546. https://doi.org/10.1007/s10068-010-0075-1
  25. Park, W. P., K. D. Park, J. H. Kim, Y. B. Cho, and M. J. Lee. 2000. Effect of washing conditions in salted Chinese cabbage on the quality of kimchi. J. Korean Soc. Food Sci. Nutr. 29: 30-34.
  26. Shaw, B. G. and C. D. Harding. 1989. Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from chill-stored meats. Int. J. Syst. Bacteriol. 39: 217-223. https://doi.org/10.1099/00207713-39-3-217
  27. Shin, D. H., M. S. Kim, J. S. Han, D. K. Lim, and W. S. Park. 1996. Changes of chemical composition and microflora in commercial kimchi. Korean J. Food Sci. Technol. 28: 137-145.
  28. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman, San Francisco, California, USA.
  29. So, M. H. and Y. S. Lee. 1997. Influences of cultural temperature on growth rates of lactic acid bacteria isolated from kimchi. Korean J. Food Nutr. 10: 110-116.
  30. So, M. H., Y. S. Lee, H. S. Kim, E. J. Cho, and M. J. Yea. 1996. An influence of salt concentrations on growth rates of lactic acid bacteria isolated from kimchi. Korean J. Food Nutr. 9: 341-347.
  31. Song, B. K., M. M. Clyde, R. Wickneswari, and M. N. Normah. 2000. Genetic relatedness among Lansium domesticum accessions using RAPD markers. Ann. Bot. 86: 299-307. https://doi.org/10.1006/anbo.2000.1186

Cited by

  1. Identification of lactic acid bacteria in salted Chinese cabbage by SDS‐PAGE and PCR‐DGGE vol.94, pp.2, 2013, https://doi.org/10.1002/jsfa.6257
  2. Metagenomic analysis for identifying Kimchi sp. during the industrial-scale batch fermentation vol.6, pp.1, 2013, https://doi.org/10.1007/s13530-014-0182-0
  3. Laminaria japonica Combined with Probiotics Improves Intestinal Microbiota: A Randomized Clinical Trial vol.17, pp.1, 2014, https://doi.org/10.1089/jmf.2013.3054
  4. Identification of Lactic Acid Bacteria in Pork Meat and Pork Meat Products Using SDS‐PAGE, 16S rRNA Gene Sequencing and MALDI‐TOF Mass Spectrometry vol.34, pp.3, 2013, https://doi.org/10.1111/jfs.12117
  5. Draft Genome Sequence of Lactobacillus plantarum wikim18, Isolated from Korean Kimchi vol.2, pp.3, 2013, https://doi.org/10.1128/genomea.00467-14
  6. Predominant lactic acid bacteria in mukeunji, a long-term-aged kimchi, for different aging periods vol.24, pp.2, 2013, https://doi.org/10.1007/s10068-015-0071-6
  7. Starter Cultures for Kimchi Fermentation vol.25, pp.5, 2013, https://doi.org/10.4014/jmb.1501.01019
  8. Effect of Low Salt Concentrations on Microbial Changes During Kimchi Fermentation Monitored by PCR-DGGE and Their Sensory Acceptance vol.25, pp.12, 2015, https://doi.org/10.4014/jmb.1506.06058
  9. Microbial Community Characteristics in Industrial Matured Chinese paocai, a Fermented Vegetable Food, from Different Factories vol.22, pp.5, 2013, https://doi.org/10.3136/fstr.22.595
  10. Kimchi and Other Widely Consumed Traditional Fermented Foods of Korea: A Review vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01493
  11. Lactic acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine vol.33, pp.6, 2013, https://doi.org/10.1007/s11274-017-2276-8
  12. Diversity and screening of lactic acid bacteria in la-baicai made by Korean-Chinese in northeastern China vol.31, pp.3, 2013, https://doi.org/10.1080/08905436.2017.1334213
  13. Identification of 2-hydroxyisocaproic acid production in lactic acid bacteria and evaluation of microbial dynamics during kimchi ripening vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-10948-0
  14. Identification of undesirable white-colony-forming yeasts appeared on the surface of Japanese kimchi vol.82, pp.2, 2013, https://doi.org/10.1080/09168451.2017.1419853
  15. Effects of carbon dioxide on metabolite production and bacterial communities during kimchi fermentation vol.82, pp.7, 2013, https://doi.org/10.1080/09168451.2018.1459462
  16. Origin of lactic acid bacteria in mulkimchi fermentation vol.62, pp.4, 2013, https://doi.org/10.3839/jabc.2019.060
  17. Molecular techniques reveal more secrets of fermented foods vol.60, pp.1, 2020, https://doi.org/10.1080/10408398.2018.1506906
  18. Lower Mg and S contents in solar salt used in kimchi enhances the taste and anticancer effects on HT-29 colon carcinoma cells vol.10, pp.9, 2013, https://doi.org/10.1039/c9ra09032k
  19. Development of Leuconostoc lactis-Specific Quantitative PCR and its Application for Identification and Enumeration in Fermented Foods vol.13, pp.4, 2013, https://doi.org/10.1007/s12161-020-01720-8
  20. Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches vol.104, pp.18, 2013, https://doi.org/10.1007/s00253-020-10804-8
  21. The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing vol.9, pp.11, 2013, https://doi.org/10.3390/foods9111568
  22. Kimchi markedly induces apoptosis in HT‐29 human colon carcinoma cells vol.45, pp.1, 2013, https://doi.org/10.1111/jfbc.13532
  23. Analysis of Cultivable Microbial Community during Kimchi Fermentation Using MALDI-TOF MS vol.10, pp.5, 2013, https://doi.org/10.3390/foods10051068
  24. Characterization of the Psychrotrophic Lactic Acid Bacterium Leuconostoc gelidum subsp. aenigmaticum LS4 Isolated from Kimchi Based on Comparative Analyses of Its Genomic and Phenotypic Properties vol.10, pp.8, 2013, https://doi.org/10.3390/foods10081899
  25. Isolation and Characterization of Weissella cibaria Bacteriophage from Commercial Baechu-Kimchi vol.50, pp.10, 2013, https://doi.org/10.3746/jkfn.2021.50.10.1117
  26. Effect of Enterotoxigenic Escherichia coli on Microbial Communities during Kimchi Fermentation vol.31, pp.11, 2013, https://doi.org/10.4014/jmb.2108.08038
  27. Towards Recreation of Food Commodities Based on Ancient Texts; The Case of Avyrtake vol.12, pp.3, 2013, https://doi.org/10.3390/app12031697