References
- Backhed, F., H. Ding, T. Wang, L. V. Hooper, G. Y. Koh, A. Nagy, C. F. Semenkovich, and J. I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101:15718-15723. https://doi.org/10.1073/pnas.0407076101
- Backhed, F., R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science 307:1915-1920. https://doi.org/10.1126/science.1104816
- Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
- Deplancke, B., K. Hristova, H. Oakley, V. McCracken, R. Aminov, R. Mackie, and H. Gaskins. 2000. Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 66:2166-2174. https://doi.org/10.1128/AEM.66.5.2166-2174.2000
- Devkota, S., Y. Wang, M. W. Musch, V. Leone, H. Fehlner-Peach, A. Nadimpalli, D. A. Antonopoulos, B. Jabri, and E. B. Chang. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice. Nature 487:104-108.
- DiBaise, J. K., H. Zhang, M. D. Crowell, R. Krajmalnik-Brown, G. A. Decker, and B. E. Rittmann. 2008. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc. 83:460-469. https://doi.org/10.4065/83.4.460
- Fernandes, J., A. Wang, W. Su, S. R. Rozenbloom, A. Taibi, E. M. Comelli, and T. M. Wolever. 2013. Age, dietary fiber, breath methane, and fecal short chain fatty acids are interrelated in Archaea-Positive humans. J. Nutr. 143:1269-1275. https://doi.org/10.3945/jn.112.170894
- Guo, X., X. Xia, R. Tang, and K. Wang. 2008. Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe 14:224-228. https://doi.org/10.1016/j.anaerobe.2008.04.001
- Leser, T. D., J. Z. Amenuvor, T. K. Jensen, R. H. Lindecrona, M. Boye, and K. Moller. 2002. Culture-independent analysis of gut bacteria: The pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673-690. https://doi.org/10.1128/AEM.68.2.673-690.2002
- Ley, R. E., F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102:11070-11075. https://doi.org/10.1073/pnas.0504978102
- Ley, R. E., P. J. Turnbaugh, S. Klein, and J. I. Gordon. 2006. Microbial ecology: Human gut microbes associated with obesity. Nature 444:1022-1023. https://doi.org/10.1038/4441022a
- Li, X., L. Zhu, Y. Jiang, and T. Si. 2011. Evaluation of the Chinese indigenous pig breed Dahe and crossbred Dawu for growth and carcass characteristics, organ weight, meat quality and intramuscular fatty acid and amino acid composition. Animal 5:1485-1492. https://doi.org/10.1017/S1751731111000425
- Luo, Y. H., Y. Su, A. D. G. Wright, L. L. Zhang, H. Smidt, and W. Y. Zhu. 2012. Lean breed Landrace pigs harbor fecal methanogens at higher diversity and density than obese breed Erhualian pigs. Archaea 10. Article ID 605289.
- Mao, S. Y., C. F. Yang, and W. Y. Zhu. 2011. Phylogenetic analysis of methanogens in the pig feces. Curr. Microbiol. 62:1386-1389. https://doi.org/10.1007/s00284-011-9873-9
- Mao, S. Y., W. Huo, and W. Y. Zhu. 2013. Use of pyrosequencing to characterize the microbiota in the ileum of goats fed with increasing proportion of dietary grain. Curr. Microbiol. 67:341-350. https://doi.org/10.1007/s00284-013-0371-0
- Mo, D., B. Liu, Z. Wang, S. Zhao, M. Yu, B. Fan, M. Li, S. Yang, G. Zhang, and T. Xiong. 2003. Genetic variation and genetic relationship of seventeen Chinese indigenous pig breeds using ten serum protein loci. Asian Australas. J. Anim. Sci. 16:939-945. https://doi.org/10.5713/ajas.2003.939
- Mueller, S., K. Saunier, C. Hanisch, E. Norin, L. Alm, T. Midtvedt, A. Cresci, S. Silvi, C. Orpianesi, and M. C. Verdenelli. 2006. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Appl. Environ. Microbiol. 72:1027-1033. https://doi.org/10.1128/AEM.72.2.1027-1033.2006
- Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
- Nicholson, J. K., E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, and S. Pettersson. 2012. Host-gut microbiota metabolic interactions. Science 336:1262-1267. https://doi.org/10.1126/science.1223813
- Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
- Samuel, B. S. and J. I. Gordon. 2006. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc. Natl. Acad. Sci. USA 103:10011-10016. https://doi.org/10.1073/pnas.0602187103
- Schwiertz, A., D. Taras, K. Schafer, S. Beijer, N. A. Bos, C. Donus, and P. D. Hardt. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190-195. https://doi.org/10.1038/oby.2009.167
- Sekirov, I., S. L. Russell, L. C. Antunes, and B. B. Finlay. 2010. Gut microbiota in health and disease. Physiol. Rev. 90:859-904. https://doi.org/10.1152/physrev.00045.2009
- Spor, A., O. Koren, and R. Ley. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9:279-290. https://doi.org/10.1038/nrmicro2540
- Suzuki, M. T., L. T. Taylor, and E. F. DeLong. 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol. 66:4605-4614. https://doi.org/10.1128/AEM.66.11.4605-4614.2000
- Timm, D. A., W. Thomas, T. W. Boileau, P. S. Williamson-Hughes, and J. L. Slavin. 2013. Polydextrose and soluble corn fiber increase five-day fecal wet weight in healthy men and women. J. Nutr. 143:473-478. https://doi.org/10.3945/jn.112.170118
- Tremaroli, V. and F. Backhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242-249. https://doi.org/10.1038/nature11552
- Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027-1031. https://doi.org/10.1038/nature05414
- Turroni, F., A. Ribbera, E. Foroni, D. van Sinderen, and M. Ventura. 2008. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie van Leeuwenhoek 94:35-50. https://doi.org/10.1007/s10482-008-9232-4
- Xu, X., P. Xu, C. Ma, J. Tang, and X. Zhang. 2013. Gut microbiota, host health, and polysaccharides. Biotechnol. Adv. 31:318-337. https://doi.org/10.1016/j.biotechadv.2012.12.009
- Zoetendal, E. G., A. D. Akkermans, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.
Cited by
- Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing vol.28, pp.4, 2015, https://doi.org/10.5713/ajas.14.0651
- Comparison of Fecal Microbial Communities between White and Black Pigs vol.58, pp.4, 2015, https://doi.org/10.3839/jabc.2015.058
- Effects of low dietary protein on the metabolites and microbial communities in the caecal digesta of piglets vol.69, pp.3, 2015, https://doi.org/10.1080/1745039X.2015.1034521
- Gut Microbiota: The Brain Peacekeeper vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.00345
- Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171576
- The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs vol.30, pp.10, 2017, https://doi.org/10.5713/ajas.16.0746
- Studying the Differences of Bacterial Metabolome and Microbiome in the Colon between Landrace and Meihua Piglets vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01812
- Metagenomic Analysis of Cecal Microbiome Identified Microbiota and Functional Capacities Associated with Feed Efficiency in Landrace Finishing Pigs vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01546
- Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth vol.6, pp.1, 2018, https://doi.org/10.1186/s40168-017-0384-1
- Differences in gut microbiota composition in finishing Landrace pigs with low and high feed conversion ratios vol.111, pp.9, 2018, https://doi.org/10.1007/s10482-018-1057-1
- Exploring the Fecal Microbial Composition and Metagenomic Functional Capacities Associated With Feed Efficiency in Commercial DLY Pigs vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00052
- Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels vol.42, pp.None, 2014, https://doi.org/10.1016/j.anaerobe.2016.10.016
- Investigation into the stability and culturability of Chinese enterotypes vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-08478-w
- Altered Gut Microbiota Profiles in Sows and Neonatal Piglets Associated with Porcine Epidemic Diarrhea Virus Infection vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-17830-z
- Modulatory Effect of Protein and Carotene Dietary Levels on Pig gut Microbiota vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-51136-6
- Effects of Dietary Supplementation with Combination of Tributyrin and Essential Oil on Gut Health and Microbiota of Weaned Piglets vol.10, pp.2, 2014, https://doi.org/10.3390/ani10020180
- Effects of acute heat stress on intestinal microbiota in grow‐finishing pigs, and associations with feed intake and serum profile vol.128, pp.3, 2014, https://doi.org/10.1111/jam.14504
- An in vitro evaluation of the effects of different statins on the structure and function of human gut bacterial community vol.15, pp.3, 2014, https://doi.org/10.1371/journal.pone.0230200
- Composition and functional diversity of fecal bacterial community of wild boar, commercial pig and domestic native pig as revealed by 16S rRNA gene sequencing vol.202, pp.4, 2014, https://doi.org/10.1007/s00203-019-01787-w
- Significant changes in caecal microbial composition and metabolites of weaned piglets after protein restriction and succedent realimentation vol.104, pp.4, 2020, https://doi.org/10.1111/jpn.13268
- Characteristics of the Jejunal Microbiota in 35-Day-Old Saba and Landrace Piglets vol.69, pp.3, 2014, https://doi.org/10.33073/pjm-2020-041
- Identification of microflora related to growth performance in pigs based on 16S rRNA sequence analyses vol.10, pp.1, 2014, https://doi.org/10.1186/s13568-020-01130-3
- Comparative analysis of the rectal and caecal microbial community composition and function in adult Erhualian and Sushan pigs vol.30, pp.3, 2014, https://doi.org/10.22358/jafs/138777/2021
- Effects and Molecular Mechanism of Single-Nucleotide Polymorphisms of MEG3 on Porcine Skeletal Muscle Development vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.607910
- Escherichia coli Exopolysaccharides Induced by Ceftriaxone Regulated Human Gut Microbiota in vitro vol.12, pp.None, 2014, https://doi.org/10.3389/fmicb.2021.634204
- Comparative Evaluation of the Ileum Microbiota Composition in Piglets at Different Growth Stages vol.12, pp.None, 2014, https://doi.org/10.3389/fmicb.2021.765691
- Effects of Substitution of Corn with Ground Brown Rice on Growth Performance, Nutrient Digestibility, and Gut Microbiota of Growing-Finishing Pigs vol.11, pp.2, 2021, https://doi.org/10.3390/ani11020375
- Identification of Enterotype and Its Effects on Intestinal Butyrate Production in Pigs vol.11, pp.3, 2021, https://doi.org/10.3390/ani11030730
- Breed identification of meat using machine learning and breed tag SNPs vol.125, pp.None, 2014, https://doi.org/10.1016/j.foodcont.2021.107971
- Comparative Microbial Profiles of Colonic Digesta between Ningxiang Pig and Large White Pig vol.11, pp.7, 2014, https://doi.org/10.3390/ani11071862
- Fecal microbial composition and functional diversity of Wuzhishan pigs at different growth stages vol.11, pp.1, 2014, https://doi.org/10.1186/s13568-021-01249-x
- Gut microbiota contributes to the development of endometrial glands in gilts during the ovary-dependent period vol.12, pp.1, 2014, https://doi.org/10.1186/s40104-021-00578-y