DOI QR코드

DOI QR Code

Comparison of Faecal Microbial Community of Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire Sows

  • Yang, Lina (Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Bian, Gaorui (Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Su, Yong (Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhu, Weiyun (Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2013.10.02
  • Accepted : 2014.01.05
  • Published : 2014.06.01

Abstract

The objective of this study was to investigate differences in the faecal microbial composition among Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire sows and to explore the possible link of the pig breed with the gut microbial community. Among the sows, the Meishan, Landrace, Duroc, and Yorkshire sows were from the same breeding farm with the same feed. Fresh faeces were collected from three sows of each purebred breed for microbiota analysis and volatile fatty acid (VFA) determination. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that samples from Bama, Erhualian, and Xiaomeishan sows, which from different farms, were generally grouped in one cluster, with similarity higher than 67.2%, and those from Duroc, Landrace, and Yorkshire sows were grouped in another cluster. Principal component analysis of the DGGE profile showed that samples from the foreign breeds and the samples from the Chinese indigenous breeds were scattered in two different groups, irrespective of the farm origin. Faecal VFA concentrations were significantly affected by the pig breed. The proportion of acetate was higher in the Bama sows than in the other breeds. The real-time PCR analysis showed that 16S rRNA gene copies of total bacteria, Firmicutes and Bacteroidetes were significantly higher in the Bama sows compared to Xiaomeishan and Duroc sows. Both Meishan and Erhualian sows had higher numbers of total bacteria, Firmicutes, Bacteroidetes and sulphate-reducing bacteria as compared to Duroc sows. The results suggest that the pig breed affects the composition of gut microbiota. The microbial composition is different with different breeds, especially between overseas breeds (lean type) and Chinese breeds (relatively obese type).

Keywords

References

  1. Backhed, F., H. Ding, T. Wang, L. V. Hooper, G. Y. Koh, A. Nagy, C. F. Semenkovich, and J. I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101:15718-15723. https://doi.org/10.1073/pnas.0407076101
  2. Backhed, F., R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science 307:1915-1920. https://doi.org/10.1126/science.1104816
  3. Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  4. Deplancke, B., K. Hristova, H. Oakley, V. McCracken, R. Aminov, R. Mackie, and H. Gaskins. 2000. Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 66:2166-2174. https://doi.org/10.1128/AEM.66.5.2166-2174.2000
  5. Devkota, S., Y. Wang, M. W. Musch, V. Leone, H. Fehlner-Peach, A. Nadimpalli, D. A. Antonopoulos, B. Jabri, and E. B. Chang. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice. Nature 487:104-108.
  6. DiBaise, J. K., H. Zhang, M. D. Crowell, R. Krajmalnik-Brown, G. A. Decker, and B. E. Rittmann. 2008. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc. 83:460-469. https://doi.org/10.4065/83.4.460
  7. Fernandes, J., A. Wang, W. Su, S. R. Rozenbloom, A. Taibi, E. M. Comelli, and T. M. Wolever. 2013. Age, dietary fiber, breath methane, and fecal short chain fatty acids are interrelated in Archaea-Positive humans. J. Nutr. 143:1269-1275. https://doi.org/10.3945/jn.112.170894
  8. Guo, X., X. Xia, R. Tang, and K. Wang. 2008. Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe 14:224-228. https://doi.org/10.1016/j.anaerobe.2008.04.001
  9. Leser, T. D., J. Z. Amenuvor, T. K. Jensen, R. H. Lindecrona, M. Boye, and K. Moller. 2002. Culture-independent analysis of gut bacteria: The pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673-690. https://doi.org/10.1128/AEM.68.2.673-690.2002
  10. Ley, R. E., F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102:11070-11075. https://doi.org/10.1073/pnas.0504978102
  11. Ley, R. E., P. J. Turnbaugh, S. Klein, and J. I. Gordon. 2006. Microbial ecology: Human gut microbes associated with obesity. Nature 444:1022-1023. https://doi.org/10.1038/4441022a
  12. Li, X., L. Zhu, Y. Jiang, and T. Si. 2011. Evaluation of the Chinese indigenous pig breed Dahe and crossbred Dawu for growth and carcass characteristics, organ weight, meat quality and intramuscular fatty acid and amino acid composition. Animal 5:1485-1492. https://doi.org/10.1017/S1751731111000425
  13. Luo, Y. H., Y. Su, A. D. G. Wright, L. L. Zhang, H. Smidt, and W. Y. Zhu. 2012. Lean breed Landrace pigs harbor fecal methanogens at higher diversity and density than obese breed Erhualian pigs. Archaea 10. Article ID 605289.
  14. Mao, S. Y., C. F. Yang, and W. Y. Zhu. 2011. Phylogenetic analysis of methanogens in the pig feces. Curr. Microbiol. 62:1386-1389. https://doi.org/10.1007/s00284-011-9873-9
  15. Mao, S. Y., W. Huo, and W. Y. Zhu. 2013. Use of pyrosequencing to characterize the microbiota in the ileum of goats fed with increasing proportion of dietary grain. Curr. Microbiol. 67:341-350. https://doi.org/10.1007/s00284-013-0371-0
  16. Mo, D., B. Liu, Z. Wang, S. Zhao, M. Yu, B. Fan, M. Li, S. Yang, G. Zhang, and T. Xiong. 2003. Genetic variation and genetic relationship of seventeen Chinese indigenous pig breeds using ten serum protein loci. Asian Australas. J. Anim. Sci. 16:939-945. https://doi.org/10.5713/ajas.2003.939
  17. Mueller, S., K. Saunier, C. Hanisch, E. Norin, L. Alm, T. Midtvedt, A. Cresci, S. Silvi, C. Orpianesi, and M. C. Verdenelli. 2006. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Appl. Environ. Microbiol. 72:1027-1033. https://doi.org/10.1128/AEM.72.2.1027-1033.2006
  18. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
  19. Nicholson, J. K., E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, and S. Pettersson. 2012. Host-gut microbiota metabolic interactions. Science 336:1262-1267. https://doi.org/10.1126/science.1223813
  20. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
  21. Samuel, B. S. and J. I. Gordon. 2006. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc. Natl. Acad. Sci. USA 103:10011-10016. https://doi.org/10.1073/pnas.0602187103
  22. Schwiertz, A., D. Taras, K. Schafer, S. Beijer, N. A. Bos, C. Donus, and P. D. Hardt. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190-195. https://doi.org/10.1038/oby.2009.167
  23. Sekirov, I., S. L. Russell, L. C. Antunes, and B. B. Finlay. 2010. Gut microbiota in health and disease. Physiol. Rev. 90:859-904. https://doi.org/10.1152/physrev.00045.2009
  24. Spor, A., O. Koren, and R. Ley. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9:279-290. https://doi.org/10.1038/nrmicro2540
  25. Suzuki, M. T., L. T. Taylor, and E. F. DeLong. 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol. 66:4605-4614. https://doi.org/10.1128/AEM.66.11.4605-4614.2000
  26. Timm, D. A., W. Thomas, T. W. Boileau, P. S. Williamson-Hughes, and J. L. Slavin. 2013. Polydextrose and soluble corn fiber increase five-day fecal wet weight in healthy men and women. J. Nutr. 143:473-478. https://doi.org/10.3945/jn.112.170118
  27. Tremaroli, V. and F. Backhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242-249. https://doi.org/10.1038/nature11552
  28. Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027-1031. https://doi.org/10.1038/nature05414
  29. Turroni, F., A. Ribbera, E. Foroni, D. van Sinderen, and M. Ventura. 2008. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie van Leeuwenhoek 94:35-50. https://doi.org/10.1007/s10482-008-9232-4
  30. Xu, X., P. Xu, C. Ma, J. Tang, and X. Zhang. 2013. Gut microbiota, host health, and polysaccharides. Biotechnol. Adv. 31:318-337. https://doi.org/10.1016/j.biotechadv.2012.12.009
  31. Zoetendal, E. G., A. D. Akkermans, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.

Cited by

  1. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing vol.28, pp.4, 2015, https://doi.org/10.5713/ajas.14.0651
  2. Comparison of Fecal Microbial Communities between White and Black Pigs vol.58, pp.4, 2015, https://doi.org/10.3839/jabc.2015.058
  3. Effects of low dietary protein on the metabolites and microbial communities in the caecal digesta of piglets vol.69, pp.3, 2015, https://doi.org/10.1080/1745039X.2015.1034521
  4. Gut Microbiota: The Brain Peacekeeper vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.00345
  5. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171576
  6. The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs vol.30, pp.10, 2017, https://doi.org/10.5713/ajas.16.0746
  7. Studying the Differences of Bacterial Metabolome and Microbiome in the Colon between Landrace and Meihua Piglets vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01812
  8. Metagenomic Analysis of Cecal Microbiome Identified Microbiota and Functional Capacities Associated with Feed Efficiency in Landrace Finishing Pigs vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01546
  9. Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth vol.6, pp.1, 2018, https://doi.org/10.1186/s40168-017-0384-1
  10. Differences in gut microbiota composition in finishing Landrace pigs with low and high feed conversion ratios vol.111, pp.9, 2018, https://doi.org/10.1007/s10482-018-1057-1
  11. Exploring the Fecal Microbial Composition and Metagenomic Functional Capacities Associated With Feed Efficiency in Commercial DLY Pigs vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00052
  12. Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels vol.42, pp.None, 2014, https://doi.org/10.1016/j.anaerobe.2016.10.016
  13. Investigation into the stability and culturability of Chinese enterotypes vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-08478-w
  14. Altered Gut Microbiota Profiles in Sows and Neonatal Piglets Associated with Porcine Epidemic Diarrhea Virus Infection vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-17830-z
  15. Modulatory Effect of Protein and Carotene Dietary Levels on Pig gut Microbiota vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-51136-6
  16. Effects of Dietary Supplementation with Combination of Tributyrin and Essential Oil on Gut Health and Microbiota of Weaned Piglets vol.10, pp.2, 2014, https://doi.org/10.3390/ani10020180
  17. Effects of acute heat stress on intestinal microbiota in grow‐finishing pigs, and associations with feed intake and serum profile vol.128, pp.3, 2014, https://doi.org/10.1111/jam.14504
  18. An in vitro evaluation of the effects of different statins on the structure and function of human gut bacterial community vol.15, pp.3, 2014, https://doi.org/10.1371/journal.pone.0230200
  19. Composition and functional diversity of fecal bacterial community of wild boar, commercial pig and domestic native pig as revealed by 16S rRNA gene sequencing vol.202, pp.4, 2014, https://doi.org/10.1007/s00203-019-01787-w
  20. Significant changes in caecal microbial composition and metabolites of weaned piglets after protein restriction and succedent realimentation vol.104, pp.4, 2020, https://doi.org/10.1111/jpn.13268
  21. Characteristics of the Jejunal Microbiota in 35-Day-Old Saba and Landrace Piglets vol.69, pp.3, 2014, https://doi.org/10.33073/pjm-2020-041
  22. Identification of microflora related to growth performance in pigs based on 16S rRNA sequence analyses vol.10, pp.1, 2014, https://doi.org/10.1186/s13568-020-01130-3
  23. Comparative analysis of the rectal and caecal microbial community composition and function in adult Erhualian and Sushan pigs vol.30, pp.3, 2014, https://doi.org/10.22358/jafs/138777/2021
  24. Effects and Molecular Mechanism of Single-Nucleotide Polymorphisms of MEG3 on Porcine Skeletal Muscle Development vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.607910
  25. Escherichia coli Exopolysaccharides Induced by Ceftriaxone Regulated Human Gut Microbiota in vitro vol.12, pp.None, 2014, https://doi.org/10.3389/fmicb.2021.634204
  26. Comparative Evaluation of the Ileum Microbiota Composition in Piglets at Different Growth Stages vol.12, pp.None, 2014, https://doi.org/10.3389/fmicb.2021.765691
  27. Effects of Substitution of Corn with Ground Brown Rice on Growth Performance, Nutrient Digestibility, and Gut Microbiota of Growing-Finishing Pigs vol.11, pp.2, 2021, https://doi.org/10.3390/ani11020375
  28. Identification of Enterotype and Its Effects on Intestinal Butyrate Production in Pigs vol.11, pp.3, 2021, https://doi.org/10.3390/ani11030730
  29. Breed identification of meat using machine learning and breed tag SNPs vol.125, pp.None, 2014, https://doi.org/10.1016/j.foodcont.2021.107971
  30. Comparative Microbial Profiles of Colonic Digesta between Ningxiang Pig and Large White Pig vol.11, pp.7, 2014, https://doi.org/10.3390/ani11071862
  31. Fecal microbial composition and functional diversity of Wuzhishan pigs at different growth stages vol.11, pp.1, 2014, https://doi.org/10.1186/s13568-021-01249-x
  32. Gut microbiota contributes to the development of endometrial glands in gilts during the ovary-dependent period vol.12, pp.1, 2014, https://doi.org/10.1186/s40104-021-00578-y