• Title/Summary/Keyword: DC.Amplifier

Search Result 317, Processing Time 0.027 seconds

Implementation of a 600Hz Power Amplifier Module for 60GHz Wireless LAN System (60GHz 무선 LAN 시스템에 탑재를 위한 600Hz대역 전력증폭기 모듈 제작)

  • 장우진;홍주연;강동민;이진희;윤형섭;심재엽;이문교;전영훈;김삼동
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.181-184
    • /
    • 2002
  • 본 논문에서는 600Hz 무선 LAN 시스템에 탑재를 위한 600㎓ 대역 전력증폭기 모듈을 개발 하였다. 600㎓ 대역 전력증폭기 모듈에 실장된 600㎓ 대역 전력증폭기 MMIC는 ETRI에서 설계 및 제작한 것으로 칩의 크기는 2.80 × 1.75㎟이며, on-wafer측정을 하여 얻은 결과는 동작 주파수 58~620Hz에서 소신호 이득은 12.4dB이고, 최대 소신호 이득은 59~60G보z에서 ISdB이며, 출력전력(Pldn)은 16.3~16.7dBm을 얻었다. 이와 같은 특성을 갖는 전력증폭기 MMIC를 사용하여 모듈을 제작하였으며, RF feed line을 위해 Rogers 사의 R03003 기판을 사용하였다. 모듈의 입출력은 동작 주파수 대역에 적합한 WRl5라는 waveguide 형태를 사용하였고, DC 바이어스 공급을 위해 3.5㎜ K-connector를 사용하였다 제작한 모듈의 크기는 40 × 30 × 15㎣이며, 최적의 성능을 얻고자 tuning bar를 상하로 이동하여 최적점을 찾았으며 나사로 고정하여 상태를 유지하도록 하였다. DC 바이어스 및 RF feed line과 칩의 연결은 본딩에 의한 인덕턴스를 최소화하기 위하여 3mil 두께의 리본 본딩을 하였다 전력증폭기 모듈을 측정한 결과, 동작주파수 600㎓ 대에서 소신호 이득은 6dB 이상, 입력 정합은 -lOdB 이하, 출력 정합은 -4dB 이하로 측정되었긴, 출력전력은 SdBm 이상으로 측정되었다. 동국대에서 제작한 600Hz 무선 LAN 시스템에 전력증폭기 모듈을 시스템 송신부에 탑재 시험한 결과, 동영상을 실시간으로 전송하는데 성공하였다.

  • PDF

High Performance Charge Pump Converter with Integrated CMOS Feedback Circuit

  • Jeong, Hye-Im;Park, Jung-Woong;Choi, Ho-Yong;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • In this paper, an integrated low-voltage control circuit is introduced for a charge pump DC-DC boost converter. By exploiting the advantage of the integration of the feedback control circuit within CMOS technology, the charge pump boost converter offers a low-current operation with small ripple voltage. The error amplifier, comparator, and oscillator in the control circuit are designed with the supply voltage of 3.3 V and the operating frequency of 1.6~5.5 MHz. The charge pump converter with the 4 or 8 pump stages is measured in simulation. The test in the $0.35{\mu}m$ CMOS process shows that the load current and ripple ratio are controlled under 1 mA and 2% respectively. The output-voltage is obtained from 4.8 ~ 8.5 V with the supply voltage of 3.3 V.

The Design of Variable Structure Position Controller for Bushless DC Motor Using New Switching Function (새로운 스위칭 함수를 이용한 브러시리스 직류 전등기의 가변 구조 위치 제어기 설계)

  • Chun, Hee-Young;Park, Gwi-Tae;Koh, Po-Hyoung;Lee, Sang-Lak;Song, Myung-Hyun;Yeo, Hyeong-Gee
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.336-339
    • /
    • 1990
  • This paper discusses the application of VSCS(Variable Structure Control System) to position control of a trapezoidal type brushless DC motor. In order to simplify the overall control system and to improve the robustness, a new switching function which is composed of linear combination of only measurable state variables Sr(x) and Sr(x) is defined. The proposed new switching function is implemented using a digital signal processor(DSP). A general PWM amplifier is replaced by an ON-OFF pattern generator for the hardware simplification and digitalization. Experimental results are given to demonstrate the validity of the proposed control method.

  • PDF

Control System of Throttle Actrator for TCS (TCS용 스로틀 액츄에이터 제어 시스템)

  • 송재복;김효준;민덕인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Accurate positioning of a throttle valve is required to implement the traction control system(TCS) which improves acceleration performance in slippery roads. In this research, position control system is developed for the main throttle actuator(MTA) system which uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Digital PID control law is used as basic control algorithm. In order to prevent overshoot and improve accuracy, velocity profiles are generated and implemented whenever the targer throttle angle is given from the TCS controller. Thanks to velocity profiles, the control performance was very good and only one set of PID gains was used to cover the entire operating range. Also, the resolution of position is about 0.4$^{\circ}C$, which is better than that of stepping motor also used as throttle actuator in some products. The response time of the developed system is also fast enough to implement the engine control based TCS algorithm.

  • PDF

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

Correction of resonance frequency for RF amplifiers based on superconducting quantum interference device

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Lee, S.K.;Chong, Y.;Oh, S.J.;Semertzidis, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.6-10
    • /
    • 2018
  • Low-noise amplifiers in the radio-frequency (RF) band based on the direct current (DC) superconducting quantum interference device (SQUID) can be used for quantum-limited measurements in precision physics experiments. For the prediction of peak-gain frequency of these amplifiers, we need a reliable design formula for the resonance frequency of the microstrip circuit. We improved the formula for the resonance frequency, determined by parameters of the DC SQUID and the input coil, and compared the design values with experimental values. The proposed formula showed much accurate results than the conventional formula. Minor deviation of the experimental results from the theory can be corrected by using the measured geometrical parameters of the input coil line.

A Differential Voltage-controlled Oscillator as a Single-balanced Mixer

  • Oh, Nam-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.12-23
    • /
    • 2021
  • This paper proposes a low power radio frequency receiver front-end where, in a single stage, single-balanced mixer and voltage-controlled oscillator are stacked on top of low noise amplifier and re-use the dc current to reduce the power consumption. In the proposed topology, the voltage-controlled oscillator itself plays the dual role of oscillator and mixer by exploiting a series inductor-capacitor network. Using a 65 nm complementary metal oxide semiconductor technology, the proposed radio frequency front-end is designed and simulated. Oscillating at around 2.4 GHz frequency band, the voltage-controlled oscillator of the proposed radio frequency front-end achieves the phase noise of -72 dBc/Hz, -93 dBc/Hz, and -113 dBc/Hz at 10KHz, 100KHz, and 1 MHz offset frequency, respectively. The simulated voltage conversion gain is about 25 dB. The double-side band noise figure is -14.2 dB, -8.8 dB, and -7.3 dB at 100 KHz, 1 MHz and 10 MHz offset. The radio frequency front-end consumes only 96 ㎼ dc power from a 1-V supply.

The Design of 10-bit 200MS/s CMOS Parallel Pipeline A/D Converter (10-비트 200MS/s CMOS 병렬 파이프라인 아날로그/디지털 변환기의 설계)

  • Chung, Kang-Min
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.195-202
    • /
    • 2004
  • This paper introduces the design or parallel Pipeline high-speed analog-to-digital converter(ADC) for the high-resolution video applications which require very precise sampling. The overall architecture of the ADC consists of 4-channel parallel time-interleaved 10-bit pipeline ADC structure a]lowing 200MSample/s sampling speed which corresponds to 4-times improvement in sampling speed per channel. Key building blocks are composed of the front-end sample-and-hold amplifier(SHA), the dynamic comparator and the 2-stage full differential operational amplifier. The 1-bit DAC, comparator and gain-2 amplifier are used internally in each stage and they were integrated into single switched capacitor architecture allowing high speed operation as well as low power consumption. In this work, the gain of operational amplifier was enhanced significantly using negative resistance element. In the ADC, a delay line Is designed for each stage using D-flip flops to align the bit signals and minimize the timing error in the conversion. The converter has the power dissipation of 280㎽ at 3.3V power supply. Measured performance includes DNL and INL of +0.7/-0.6LSB, +0.9/-0.3LSB.

Study Of Millimeter-Wave Passive Imaging Sensor Using the Horn Array Antenna (반사판을 이용한 밀리미터파 수동 이미징 시스템 연구)

  • Lim, Hyun-Jun;Chae, Yeon-Sik;Jung, Kyung-Kwon;Kim, Mi-Ra;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • We have developed a millimeter-wave passive imaging system with reflector for detection of concealed objects. We have designed a millimeter-wave sensor, control device for reflector control, and a lens for focusing of millimeter-wave signal at center frequency of 94GHz. DC signal from millimeter-wave sensor output is filtered by low pass filter and amplified by video amplifier, and then converted into digital signal by using ADC/DAQ. This signal is image processed by computer, and it is possible to obtain millimeter-wave passive image with resolution of $18{\times}64$ pixel using the fabricated system. It is shown that we can obtain the image of men and concealed object with the system.

Circuit Performance Prediction of Scaled FinFET Following ITRS Roadmap based on Accurate Parasitic Compact Model (정확한 기생 성분을 고려한 ITRS roadmap 기반 FinFET 공정 노드별 회로 성능 예측)

  • Choe, KyeungKeun;Kwon, Kee-Won;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.33-46
    • /
    • 2015
  • In this paper, we predicts the analog and digital circuit performance of FinFETs that are scaled down following the ITRS(International technology roadmap for semiconductors). For accurate prediction of the circuit performance of scaled down devices, accurate parasitic resistance and capacitance analytical models are developed and their accuracies are within 2 % compared to 3D TCAD simulation results. The parasitic capacitance models are developed using conformal mapping, and the parasitic resistance models are enhanced to include the fin extension length($L_{ext}$) with respect to the default parasitic resistance model of BSIM-CMG. A new algorithm is developed to fit the DC characteristics of BSIM-CMG to the reference DC data. The proposed capacitance and resistance models are implemented inside BSIM-CMG to replace the default parasitic model, and SPICE simulations are performed to predict circuit performances such as $f_T$, $f_{MAX}$, ring oscillators and common source amplifier. Using the proposed parasitic capacitance and resistance model, the device and circuit performances are quantitatively predicted down to 5 nm FinFET transistors. As the FinFET technology scales, due to the improvement in both DC characteristics and the parasitic elements, the circuit performance will improve.