• Title/Summary/Keyword: DC-DC Step Down

Search Result 100, Processing Time 0.027 seconds

Comparison of Conventional DC-DC Converter and a Family of Diode-Assisted DC-DC Converter in Renewable Energy Applications

  • Zhang, Yan;Liu, Jinjun;Ma, Xiaolong;Feng, Junjie
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.203-216
    • /
    • 2014
  • In the conventional dc-dc converter, a pair of additional diode and the adjacent passive component capacitor/inductor can be added to the circuit with an X-shape connection, which generates a family of new topologies. The novel circuits, also called diode-assisted dc-dc converter, enhance the voltage boost/buck capability and have a great potential for high step-up/step-down power conversions. This paper mainly investigates and compares conventional dc-dc converter and diode-assisted dc-dc converter in wide range power conversion from the aspects of silicon devices, passive components requirements, electro-magnetic interference (EMI) and efficiency. Then, a comprehensive comparison example of a high step-up power conversion system was carried out. The two kinds of boost dc-dc converters operate under the same operation conditions. Mathematical analysis and experiment results verify that diode-assisted dc-dc converters are very promising for simultaneous high efficiency and high step-up/step-down power conversion in distributed power supply systems.

Dynamic Analysis and Control Circuit Design of Isolated Double Step-Down DC-DC Converter (절연형 이중 강압 직류-직류 컨버터의 동특성 해석 및 제어회로 설계)

  • Ha, Heonchul;Kim, Hansang;Choi, Byungcho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.229-230
    • /
    • 2015
  • This paper presents practical details about control-loop design and dynamic analysis for a voltage-mode controlled isolated double step-down DC-DC converter. Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of isolated double step-down DC-DC converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

A Forward-Integrated Buck DC-DC Converter with Low Voltage Stress for High Step-Down Applications

  • Adivi, Maedeh Ghanbari;Yazdani, Mohammad Rouhollah
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.356-363
    • /
    • 2018
  • The combination of a buck converter and a forward converter can be considered to accomplish a high step-down non-isolated converter. To decrease the insufficient step-down ratio of a regular buck converter and to distribute switch voltage stress, a forward-integrated buck (FIB) converter is proposed in this paper. The proposed interleaved DC-DC converter provides an additional step-down gain with the help of a forward converter. In addition to its simple structure, the transformer flux reset problem is solved and an additional magnetic core reset winding is not required. The operational principle and an analysis of the proposed FIB converter are presented and verified by experimental results obtained with a 240 W, 150 V/24 V prototype.

Design of a Step-Down DC-DC converter with On-chip Capacitor multiplyed Compensation circuit (온칩된 커패시터 채배기법 적용 보상회로를 갖는 DC to DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.537-538
    • /
    • 2008
  • A step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in 0.18um CMOS standard process. In an effort to improve low load efficiency, this paper proposes the PFM (Pulse Frequency modulation) voltage mode 1MHz switching frequency step-down DC-DC converter with on-chip compensation. Capacitor multiplier method can minimize error amplifier compensation block size by 20%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87% for the output voltage of 1.8V (input voltage : 3.3V), maximum load current 500mA, and 0.14% output ripple voltage. The total core chip area is $mm^2$.

  • PDF

Transformerless Three-Level DC-DC Buck Converter with a High Step-Down Conversion Ratio

  • Zhang, Yun;Sun, Xing-Tao;Wang, Yi-Feng;Shao, Hong-Jun
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • For high power high step-down dc-dc conversion applications, conventional three-level dc-dc converters are subject to extreme duty cycles or increased volume and cost due to the use of transformers. In this paper, a transformerless three-level dc-dc buck converter with a high step-down conversion ratio is proposed. The converter comprises two asymmetrical half bridges, which are of the neutral point clamped structures. Therefore, the output pulse voltage of the converter can be obtained in terms of the voltage difference between the two half bridges. In order to realize harmonious switching of the converter, a modulation strategy with capacitor voltages self balance is presented. According to the deduced output dc voltage function, transformerless operation without extreme duty cycles can be implemented. Experimental results from a 1kW prototype verify the validity of the proposed converter. It is suitable for ship electric power distribution systems.

Analysis of Step-Down Converter with Low Ripple for Smart IoT Devices (스마트 사물인터넷 기기용 저리플 방식의 스텝다운 컨버터 분석)

  • Kim, Da-Sol;Al-Shidaifat, AlaaDdin;Gu, Jin-Seon;Kumar, Sandeep;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.641-644
    • /
    • 2021
  • Wearable devices and IoT are being utilized in various fields, where all systems are developing in the direction of multi-functionality, low power consumption, and high speed. In this paper, we propose a DC -DC Step-down C onverter for IoT smart devices. The proposed DC -DC Step-down converter is composed of a control block of the power supply stage. It also consists of an overheat protection circuit, under-voltage protection circuit, an overvoltage protection circuit, a soft start circuit, a reference voltage circuit, a lamp generator, an error amplifier, and a hysteresis comparator. The proposed DC-DC converter was designed and fabricated using a Magnachip / Hynix 180nm CMOS process, 1-poly 6-metal, the measured results showed a good match with the simulation results.

Dynamic Analysis and Control Design of a Step-Down Switched-Capapcitor Dc-Dc Converter (강압형 스위치드-커패시터 DC-DC 컨버터의 동특성해석 및 제어회로 설계)

  • 최병조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.485-488
    • /
    • 2000
  • In this paper dynamic analyses and control design of a step-down switched-capacitor dc-dc converter are presented. Open-loop dynamics of the converter are analyzed using the stage-space averaging technique. A systmatic control design method that offers excellent closed-loop performance for the converter is proposed, The analysis results and dynamic performance of the converter are verified using 18 W experimental converter that delivers a 5V/3.5V output from a 11-16V input source.

  • PDF

A New LED Current Balancing Scheme Using Double-Step-Down DC-DC Converter (이중강압 DC-DC 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Kim, Kisu;Do, Duc Tuan;Kim, Heung-Geun;Cha, Honnyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1474-1480
    • /
    • 2017
  • This paper presents a new LED current balancing scheme using double-step-down dc-dc converter. With the proposed structure, the two channel LED currents are automatically balanced without using any dedicated control or auxiliary circuit. In addition, switching loss of the switching devices in the proposed LED driver is lower than that of the conventional buck LED driver. To verify the operation of the proposed LED driver, a hardware prototype is built and tested with different number of LED.

Design of Step-down DC-DC Converter using Switched-capacitor for Small-sized Electronics Equipment (소형 전자기기를 위한 스위치드 커패시터 방식의 강압형 DC-DC 변환기 설계)

  • Kwon, Bo-Min;Heo, Yun-Seok;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4984-4990
    • /
    • 2010
  • In this paper, a Step-down CMOS DC-DC Converter using low power switched capacitor method is designed in a 0.5 ${\mu}m$ technology for the integration of devices. Conventional DC-DC converter is used inductor that can store energy in a magnetic field but have low efficiency because power consumption is caused by magnetic flux. And there were problems with size, weight and price to integrate chip. In this paper, a proposed Inductorless step-down CMOS DC-DC converter of low power using SC method is designed in a 0.5um technology to solve these problems. Designed DC-DC converter have 96% power efficiency with 200kHz frequency by using cadence simulation.

The Design of low voltage step-down DC-DC Converter with ESD protection device of low voltage triggering characteristics (저 전압 트리거형 ESD 보호회로를 탑재한 저 전압 Step-down DC-DC Converter 설계)

  • Yuk, Seung-Bum;Lee, KJae-Hyun;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.149-155
    • /
    • 2006
  • In this study, the design of low voltage DC-DC converter with low triggering ESD (Electro-Static Discharge) protection circuit was investigated. The purpose of this paper is design optimization for low voltage(2.5V to 5.5V input range) DC-DC converter using CMOS switch. In CMOS switch environment, a dominant loss component is not switching loss but conduction loss at 1.2MHz switching frequency. In this study a constant frequency PWM converter with synchronous rectifier is used. And zener Triggered SCR device to protect the ESD phenomenon was designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 8V.

  • PDF