• Title/Summary/Keyword: DC voltage-current characteristics

Search Result 552, Processing Time 0.028 seconds

A Study on the Design of Step Up DC-DC Converter and Parallel Operation (승압형 DC-DC 컨버터의 설계 및 병렬운전에 관한 연구)

  • 서광덕;홍찬욱;설승기;박민호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.579-587
    • /
    • 1992
  • This paper is to study on the step-up DC-DC converter for power system which yields output characteristics of low voltage and high current, such as fuel cell generation system. DC-AC-DC scheme is suggested for high ratio of voltage conversion. Three phase MOSFET-SPWM inverter is adopted for intermediate AC conversion and inverter output frequency is chosen at 400[Hz] in order to reduce the size of magnetic circuit and DC filter. Since control strategy which combines voltage controller with current controller in parallel is used, good output performance is obtained both in steady state and in transient state like load variation, not only in single unit operation but also in parallel operation.

Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

  • Kim, S.K.;Go, B.S.;Dinh, M.C.;Kim, J.H.;Park, M.;Yu, I.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.32-35
    • /
    • 2015
  • Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed.

Design of fuel cell power conversion system controlled by TMS32OC31 DSP Chip (TMS32OC31 DSP칩에 의해 제어되는 연료전지용 전력변환장치의 설계)

  • Mun, S.P.;Kwon, S.K.;Suh, K.Y.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.351-354
    • /
    • 2006
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system Therefor, this paper, consists of an isolated DC -DC converter to boost the fuel cell voltage 380[$V_{DC}$] and a PWM inverter with LC filter to convent the DC voltage to single phase 220[$V_{AC}$]. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena Besides the efficiency of 93-97[%]is obtained over the wide output voltage regulation ranges and load variations.

  • PDF

Design of active power factor control AC/DC converter having current control loop with no compensator (전류 제어 루프에 보상을 행하지 않는 능동 역률 제어 AC/DC 컴버터의 제어기 설계)

  • 이인호;김성환;유지윤;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.216-223
    • /
    • 1996
  • The active power factor control AC/DC converter needs a current loop compensator to obtain better dynamic characteristics and power factor performance, but the optimal design of a current loop compensator is difficult because the AC/DC converter is a nonlinear system having periodically varying poles and zeros. The predictive current control scheme generates a control input using the dynamic equations of the AC/DC converter so that the dynamic of the AC/DC converter is included in the controller and the necessary bandwidth and the gain characteristics of the current control loop are satisfied. And as a result, a compensator becomes unnecessary and the current loop shows the improved current loop characteristics. In this paper, a power factor controller without current loop compensator by adopting a predictive current control scheme is designed and the designed power factor controller is modelled by using a small signal perturbation modelling technique, and simulated to investigate its small signal characteristics. A 200 W power factor control AC/DC converter is built to verify the effectiveness of the proposed power factor controller.

  • PDF

Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Forward Bias (교류 순방향 바이어스에 따른 형광 OLED의 전계 발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.398-404
    • /
    • 2017
  • In order to study the AC driving mechanism for OLED lighting, the fluorescent OLEDs were fabricated and the electroluminescent characteristics of the OLEDs by AC forward bias were analyzed. In the case of the driving method of OLED by AC forward bias under the same voltage and the same current density, degradation of luminescent characteristics for elapsed time progressed faster than in the case of the driving method by DC bias. These phenomena were caused by the peak voltage of AC forward bias which is ${\sqrt{2}}$ times higher than the DC voltage. In addition, the degradation of the OLED was accelerated because the AC forward bias had come close to the upper limit of the allowable voltage range even though the peak voltage didn't exceed the allowable range of the OLED. However, the fabricated fluorescent OLED showed little degradation of OLED characteristics due to AC forward bias from 0 V to 6.04 V. Therefore, OLED lighting by AC driving will become commercialized if sufficient luminance is realized at a voltage at which the characteristics of the OLED are not degradation by the AC driving method.

The Operation Characteristics of Dual-mode Power Converter for DC Reactor Type Superconducting Fault Current Limiter (DC 리액터형 고온초전도한류기를 위한 전력변환기의 dual-mode 운전특성)

  • 전우용;이승제;안민철;이안수;윤용수;윤경용;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.43-46
    • /
    • 2003
  • The dc reactor type high-Tc superconducting fault current limiter(SFCL) is composed of three parts, a power converter, a magnetic core reactor(MCR) and a dc reactor. This study concerned with the power converter of the DC reactor type high-Tc SFCL. The rectifying devices which power converter of 6.6kV/200A SFCL consists of have to endure high voltage. We propose the dual mode power converter to reduce the voltage which each rectifying device endures. In the single phase the experiment and simulation of dual mode power converter and the simulation of power converter with one bridge rectifier are performed. The current of each system with different power converter has a same tendency and the voltage which rectifying device of dual mode power converter endures is reduced in half by comparison with that of power converter with one bridge rectifier. We found dual mode power converter can be applied to SFCL.

  • PDF

Development of 3.0[kW] class Fuel Cell Power Conversion System(I) (3[kW]급 연료전지용 전력변환장치(I)의 개발)

  • Mun, S.P.;Kwon, S.K.;Suh, K.Y.;Kim, Y.M.;Ryu, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1207-1208
    • /
    • 2006
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage 380[VDC] and a PWM inverter with LC filter to convent the DC voltage to single-phase 220[VAC]. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%] is obtained over the wide output voltage regulation ranges and load variations.

  • PDF

A Study on the characteristics improvement of LLC resonant half-bridge DC-DC converter with synchronous rectifier (LLC 공진형 하프브리지 DC-DC 컨버터용 동기정류기의 특성 개선에 관한 연구)

  • Lee, Gwang-Taek;Lee, Darl-Woo;Ahn, Tae-Young;Kim, Sung-Cheol;Jang, Chan-Gyu;Kim, Young-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.178-181
    • /
    • 2005
  • This paper presents a synchronous rectifier in a LLC half bridge topology. The proposed synchronous rectifier is used to a current driven synchronous rectifier(SR). If FET is driven without dead times. Voltage driven synchronous rectifier may introduce voltage and current surge during the zero dead times. To solve this problem, we propose to use modified current driven synchronous rectifier. Finally, the prototype is built and comparison on the current and voltage driven synchronous rectifier(SR).

  • PDF

A study on the Design of Output 380V DC-DC Converter for LVDC Distribution (LVDC 배전을 위한 출력 380V DC-DC 컨버터 설계에 관한 연구)

  • Kim, Phil-Jung;Yang, Seong-Soo;Oh, Byeong-Yun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.208-215
    • /
    • 2020
  • In this study, the output 380V direct current DC-DC converter for low-voltage direct current(LVDC) distribution was designed in three types, and the voltage and current characteristics of the three types of DC-DC converter were compared and analyzed through simulation. When the converter was configured using a parallel structure with the power metal-oxide semiconductor field-effect transistor and two current suppression insulated-gate bipolar transistors(IGBTs), the time when the output voltage was stabilized at DC 380V was relatively short with 9ms and the range of output current changes was also between 44.8A and 50.2A, indicating that the width of change was much smaller and the effect of current suppression was greater compared to when IGBT was not applied(68~83A). These results suggest that the proposed DC-DC converter for LVDC distribution is likely to be applied to smart grid construction.

DC Characteristics of AlGaN/GaN HFETs Using the Modeling of Piezoelectric and Thermal Effects (Piezoelectric효과와 열 효과 모델링을 고려한 AlGaN/GaN HFET의 DC 특성)

  • Park, Seung-Wook;Hwang, Woong-Joon;Shin, Moo-Whan
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.769-774
    • /
    • 2003
  • In this paper, we report on the DC characteristics of the AlGaN/GaN HFETs using physical models on piezoelectric and thermal effects. Employing the models was found to be essential for a realistic prediction of the DC current-voltage characteristics of the AlGaN/GaN HFETs. Though use of the implementation of the physical models, peak drain current, transconductance, pinch-off voltage, and most importantly, the negative slope in the current were accurately predicted. The importance of the heat sink effect was demonstrated by the comparison of the DC characteristics of AlGaN/GaN HFETs fabricated from different substrates including sapphire, Si and SiC. Highest peak current was achieved from the device with SiC by an effective suppression of heat sink effect.