• Title/Summary/Keyword: DC current sensor

Search Result 215, Processing Time 0.025 seconds

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.

A study on the Development of Sensorless Driver for Electric Compressor Brushless DC Motor (전동식 컴프레서 브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • Cho, Jung-Hun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.374-375
    • /
    • 2019
  • In this paper, In the whole industry, there is a tendency to replace brushless motors with brushless motors because of the high rate of failure in DC motors with brushes. Accordingly, many methods for driving a brushless motor have been developed and studied. In order to drive the brushless motor, it is essential to know the information about the rotor position of the motor. However, it is not possible to use a position sensor for rotor disconnection due to the structure of an electric compressor brushless DC motor. In this paper, we investigate the rotor position of the motor by using the counter electromotive force included in the voltage of the terminal made by Y connection by using the resistance of each phase without using Hall sensor or encoder generally used to detect the rotor position. A sensorless drive system for a square wave brushless direct current (DC) motor is proposed. To do this, we propose a method to detect the rotor position from the analyzed terminal voltage waveform by performing terminal voltage analysis of each phase for 3-phase, 2-exciton unipolar PWM.

  • PDF

Sensorless speed control of DC servo motor (DC 서보모터의 센서리스 속도 제어)

  • 김창세;오정석;하주식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.203-206
    • /
    • 1997
  • DC servo motors are widely used in many industrial fields as actuator of robot and driving power motors of electrical vehicle. Usually in the speed control systems, of motors, speed sensors are required and this fact results in the increased price and operating cost and the limited application of the motors. In this paper, a new speed control method for DC servo motor is proposed. In the scheme, the rotational speed is estimated by the measurement values of the armature voltage and current, instead of measurement by sensor. Optimal control theory is applied to design of the controller in construction of real system. This paper also report on the results of experiments to prove the validity of the proposed method.

  • PDF

The Control of Single Phase High Power Factor PWM converter using Siding mode Observer without a source voltage sensor (슬라이딩 모드 관측기를 이용한 전원전압 센서없는 단상 PWM 컨버터의 고역율 제어)

  • 유지용;양이우;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.684-687
    • /
    • 1999
  • In this paper, a method for controlling a single phase PWM AC/DC converter without any voltage sensors is proposed. In this method, the source voltage is estimated by sliding mode observer and input current is synchronized with the estimated source voltage. The source voltage is estimated by current error between the actul and the estimated current. The experimental results confirm the validity of the proposed control method.

  • PDF

A Single-Phase Active Power Filter Control with Load Current Estimation Method (부하전류 추정기법에 의한 단상능동전력필터 제어)

  • 곽상신;이무영;최연호;임성운;권우현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.335-342
    • /
    • 2000
  • A new control method for a single-phase active power filter, based on a load current estimation using a DC capacitor voltage of active power filter without sensing nonlinear load current, is proposed in this paper. Because the method proposed can remove the load current sensor in comparison with a conventional method sensing the load current and DC capacitor voltage together, it can make the active power filter easy installation, low cost, small size with no performance detriment. In addition, sample-hold technique and proportional control method is adopted to control the DC capacitor voltage and as no delay element such as LPF or PI control in the conventional method is used, the transient response is fast and good. Operation of a single-phase active power filter which consist of eight mode is explained according to utility voltage, compensation current and switch state, and compensation characteristics of active power filter using proposed method is verified by experiment.

  • PDF

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

Low-Cost Single-Phase to Three-Phase PWM Converters for Induction Motor Drives (유도전동기 구동을 위한 저가형 단상-3상 AC/DC/AC PWM 컨버터)

  • Kim Tae-Yun;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, a single-phase to three-phase PWM converter topology using six switches only for low cost induction motor drive is proposed. The converter topology is of lower cost than the conventional one, which gives sinusoidal input current, unity power factor, dc output voltage control and bidirectional power flow In addition, the source voltage sensor is eliminated by controlling the deviation between the model current and the system current to be zero. The performance of the proposed converter has been demonstrated through the computer simulation.

  • PDF

Displacement Current in a Parallel Plate Capacitor Biased by DC Voltages (직류전압을 건 평행판 축전기에서 변위전류 고찰)

  • Kim, Jae-Dong;Jang, Taehun;Ha, Hye Jin;Sohn, Sang Ho
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.219-230
    • /
    • 2021
  • In this study, we derived several formulas for magnetic fields and induced voltages in a parallel plate capacitor biased by DC voltages. The computer simulation based on the derived formulas reveals that the magnetic fields due to the displacement current fall within the range of 10-10T to 10-9T and thence the experiment for the displacement current is not possible because the magnetic field sensor used in Data Logger could measure the magnetic fields of above 10-5T range. Contrary to this, the computer simulation confirms that the induced voltages in a toroidal coil due to the displacement current range measurable values of 0.002~0.021V. The results imply that the displacement current can be confirmed by measuring the induced voltages in a toroidal coil inserted into a parallel plate capacitor under DC biasing.

Feedforward Compensation Method of Output Voltage with 3Phase AC/DC PWM Converter on DC Distribution System for Improved Response (응답성 향상을 위한 직류배전용 3상 AC/DC PWM 컨버터 출력전압 전향보상 기법)

  • Choi, Hyeong-Jun;Lee, Chun-Bok;Hong, Seok-Jin;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.516-517
    • /
    • 2015
  • This paper proposes the feedforward compensation method of output voltage with 3phase AC/DC PWM converter on DC distribution system for improved response. AC/DC PWM converter on DC distribution is required power supply of high quality because of renewable energy sources and load links. In general, Feedforward compensation method of 3phase AC/DC PWM converter receives the sensor input to the output current, load power. Resulting, error of the sensing values and communication cause time delay. Therefore, Feedforward compensation method through only the output voltage is proposed in this paper. The feedforward compensation method through only the output voltage can be applied to the two-level AC/DC PWM converters, as well as multi-level converter or inverter.

  • PDF

Fabrication of the Thermal Current Converters as the Primary AC Current Standard (교류전류 1차 표준용 열전형 전류변환기의 제작)

  • Kwon, Sung-Won;Lee, Rae-Duk;Klonz, Manfred
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.77-83
    • /
    • 1992
  • A primary standard of ac current at low frequency is derived from the standard of dc current by ac-dc transfer instrument. A set of 15 thermal current converters(TCCs) have been constructed as the primary current standards from 5 mA to 20 A at the frequency range of 10 Hz to 100 kHz. It is evaluated that the uncertainties for the maintenance and dissemination of ac current standard are less than 52 ppm up to 20 mA and 20 kHz, 60 ppm up to 100 mA and 20 kHz, and rising to 200 ppm at higher currents and frequencies.

  • PDF