Processing math: 100%
  • Title/Summary/Keyword: Cylindrical Tank

Search Result 157, Processing Time 0.028 seconds

Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method (수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석)

  • Park, Jong-Ryul;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.628-635
    • /
    • 2001
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The effective masses and heights for the tank contents are presented for engineering design model.

  • PDF

Wind loads on fixed-roof cylindrical tanks with very low aspect ratio

  • Lin, Yin;Zhao, Yang
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.651-668
    • /
    • 2014
  • Wind tunnel tests are conducted to investigate the wind loads on vertical fixed-roof cylindrical tanks with a very low aspect ratio of 0.275, which is a typical ratio for practical tanks with a volume of 100,000m3. Both the flat-roof tank and the dome-roof tank are investigated in present study. The first four moments of the measured wind pressure, including the mean and normalized deviation pressure, kurtosis and skewness of the pressure signal, are obtained to study the feature of the wind loads. It is shown that the wind loads are closely related to the behavior of flow around the structure. For either tank, the mean wind pressures on the cylinder are positive on the windward area and negative on the sides and the wake area, and the mean wind pressures on the whole roof are negative. The roof configurations have no considerable influence on the mean pressure distributions of cylindrical wall in general. Highly non-Gaussian feature is found in either tank. Conditional sampling technique, envelope method, and the proper orthogonal decomposition (POD) analysis are employed to investigate the characteristics of wind loads on the cylinder in more detail. It is shown that the patterns of wind pressure obtained from conditional sampling are similar to the mean pressure patterns.An instantaneous pressure coefficient can present a wide range from the maximum value to the minimum value. The quasi-steady assumption is not valid for structures considered in this paper according to the POD analysis.

Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 1: Wind tunnel test

  • Liu, Qing;Zhao, Yang;Cai, Shuqi;Dong, Shilin
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.483-493
    • /
    • 2020
  • Large cylindrical floating-roof tanks, constructed as oil containers, are usually distributed regularly in open area and easily exposed to severe wind loads. However, wind pressures around these grouped squat tanks appear to have not been clearly given in design codes or thoroughly studied in existing researches. This paper conducts a detailed investigation on wind loads on the external wall of a four-tank group in square arrangement. To achieve that, wind tunnel tests are carried out on both empty and full tank groups, considering various wind angles and spacing. Results show that 3 regions in elevation can be identified on the tank shell according to the circumferential wind pressure distribution. The upper 2 regions cover a relatively small portion of the shell where excessive negative pressures are spotted, setting an alarm to the design of the top angle and stiffening rings. By comparing results on grouped tanks to those on an isolated tank, grouping effects concerning wind angle, tank position in group and spacing are discussed. Deviations on pressure distributions that will compromise structural safety are outlined, including the increase of negative pressures, the shift of maximum pressure locations as well as the change of positive pressure range. And, several potentially unfavourable wind pressure distributions are selected for further analyses.

Natural Frequency Characteristics of a Cylindrical Tank Filled with Bounded Compressible Fluid (압축성 유체로 충진된 원통형 탱크의 고유진동수의 특성)

  • 정경훈;김강수;박근배
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.291-302
    • /
    • 1997
  • This paper presents an analytical method for evaluating the free vibration of a circular cylindrical tank filled with bounded compressible fluid. The analytical method was developed by means of the finite Fourier series expansion method. The compressible fluid motion was determined by means of the linear velocity potential theory. To clarify the validity of the analytical method, the natural frequencies of a circular cylindrical tank with the clamped-clamped boundary condition, and filled with water, were obtained by the analytical method and the finite element method using a comercial ANSYS 5.2 software. Excellent agreement on the natural frequencies of the liquid-filled tank structure was found. The compressiblity and the fluid density effects on the normalized coupled natural frequencies were investigated. The density of fluid affects on all coupled natural frequencies of the tank, whereas the compressibility of fluid affects mainly on the natural frequencies of lower circumferential modes.

  • PDF

Visualization Study on Kinematics of Bubble Motion in a Water Filled Cylindrical Tank (원형 탱크 내부의 기포운동에 대한 가시화 연구)

  • Kim, Sang-Moon;Jeong, Won-Taek;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • A visualization study to evaluate bubble motion in a tab water filled cylindrical tank with a varying flow rate of compressed air is conducted. The flow rate of compressed air varies from 1 to 5 L/min. Time resolved images are acquired by a high speed camera in 10 bit gray level at 100 fps and the measurement volume is irradiated by a 230 W halogen lamp. It is observed that there are three different regions; the bubble formation region, the rising bubble region and the free surface region. During the rise of bubble, the shape is changed as if an elastic body. Based on the binarized bubble image, the mean diameters of rising bubbles are estimated at beneath of the free surface. As the gas flow rate increases, the mean diameter is increased and the rising velocity also increases with buoyancy force.

Analytical Study on Free Vibration of Cylindrical Liquid-Storage Tanks (원통형 액체저장탱크의 고유진동에 대한 이론적 연구)

  • Lee, Jin-Kyu;Lee, Sang-Young;Kim, Ki-Whan;Cho, Jin-Rae;Park, Tae-Hak;Lee, Woo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.602-607
    • /
    • 2000
  • Fuel-storage tank is a representative example of liquid-structure interaction systems. In order to prevent the undesired structural failure by a variety of external loads, the reliable analysis of the dynamic response of such structural system is of a great importance. In this paper, we address the analytical study on free vibration of axisymmetric cylindrical fuel-storage tanks together with the parametric investigation of eigen-characteristics with respect to the relative fuel fill-height and the relative tank height. Numerical results illustrating theoretical results are also included.

  • PDF

Flow Characteristics for Vortexing Draining by Vortex Suppressor from Cylindrical Containers (회전 억제 장치에 따른 원통 내 회전 배출 유동특성)

  • Zhang, YingZhe;Park, Chan-Kyu;Sohn, Chang-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.89-92
    • /
    • 2006
  • In the present study, the flow field of a mesh type suppressor with varying holes at the central portion is studied to investigate drain flow characteristics in a cylindrical tank. Further, an attempt is made to understand the changes in the flow field brought about by the suppressors of different kinds in a circular tank which ultimately prevents vortex formation. For this purpose, flow visualization studies using PIV (Particle Image Velocimetry) to determine the flow patterns in a cylindrical tank with circular cross section without suppressor and with suppressor are carried out after imparting rotation to the liquid in the tank. Results are obtained when there is no draining and with draining. The flow field is visualized both in horizontal and vertical planes.

  • PDF

Analytical and experimental study on natural sloshing frequencies in annular cylindrical tank with a bottom gap

  • Lee, H.W.;Jeon, S.H.;Cho, J.R.;Seo, M.W.;Jeon, W.B.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.877-895
    • /
    • 2016
  • This paper is concerned with the analytical derivation of natural sloshing frequencies of liquid in annular cylindrical tank and its verification by experiment. The whole liquid domain is divided into three simple sub-regions, and the region-wise linearized velocity potentials are derived by the separation of variables. Two sets of matrix equations for solving the natural sloshing frequencies are derived by enforcing the boundary conditions and the continuity conditions at the interfaces between sub-regions. In addition, the natural sloshing frequencies are measured by experiment and the numerical accuracy of the proposed analytical method is verified through the comparison between the analytical and experimental results. It is confirmed that the present analytical method provides the fundamental sloshing frequencies which are in an excellent agreement with the experiment. As well, the effects of the tank radial gap, the bottom flow gap and the liquid fill height on the fundamental sloshing frequency are parametrically investigated.

Assessing the Geometric Integrity of Cylindrical Storage Tanks: A Comparative Study Using Static Terrestrial Laser Scanning and Total Station

  • Mansour Alghamdi;Jinha Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.243-255
    • /
    • 2024
  • This study compares Static Terrestrial Laser Scanning (STLS)with the conventional Total Station (TS) method for the geometric assessment of cylindrical storage tanks. With the crucial need for maintaining tank integrity in the oil and gas industry, STLS and TS methods are evaluated for their efficacy in assessing tank deformations. Using STLS and TS, the roundness and verticality of two cylindrical tanks were examined. A deformation analysis based on American Petroleum Institute (API) standards was then provided. Key objectives included comparing the two methods according to API standards, evaluating the workflow for STLS point cloud processing, and presenting the pros and cons of the STLS method for tank geometric assessment. The study found that STLS, with its detailed and high-resolution data acquisition, offers a substantial advantage in having a comprehensive structural assessment over TS. However, STLS requires more processing time and prior knowledge about the data to tune certain parameters and achieve accurate assessment. The project outcomes intend to enhance industry professionals' understanding of applying STLS and TS to tank assessments, helping them choose the best method for their specific requirements.

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank (원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석)

  • Kim, Sung Bo;Cho, Kwang Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1337-1347
    • /
    • 2013
  • The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.