• 제목/요약/키워드: Cyclic permutation

검색결과 8건 처리시간 0.036초

유클리드 기하학 기반의 넓은 둘레를 가지는 준순환 저밀도 패리티검사 코드 (Quasi-Cyclic Low-Density Parity-Check Codes with Large Girth Based on Euclidean Geometries)

  • 이미성;지앙쉐에친;이문호
    • 대한전자공학회논문지TC
    • /
    • 제47권11호
    • /
    • pp.36-42
    • /
    • 2010
  • 이 논문은 유클리드 기하학과 Circulant Permutation Matrices에서 병렬 구성을 기반으로 하는 Quasi-cyclic Low-density parity-check (QC-LDPC) 코드의 생성을 위한 하이브리드한 접근방식을 나타낸다. 이 방법으로 생성된 코드는 넓은 둘레(Large Girth)와 저밀도(Low Density)를 가진 규칙적인 코드로 나타내어진다. 시뮬레이션 결과는 이 코드들이 반복 복호(Iterative Decoding)를 통해 좋은 성능을 갖는것과 부호화되지 않은 시스템에서 좋은 코딩 이득을 달성하는 것을 보인다.

Construction of Block-LDPC Codes based on Quadratic Permutation Polynomials

  • Guan, Wu;Liang, Liping
    • Journal of Communications and Networks
    • /
    • 제17권2호
    • /
    • pp.157-161
    • /
    • 2015
  • A new block low-density parity-check (Block-LDPC) code based on quadratic permutation polynomials (QPPs) is proposed. The parity-check matrix of the Block-LDPC code is composed of a group of permutation submatrices that correspond to QPPs. The scheme provides a large range of implementable LDPC codes. Indeed, the most popular quasi-cyclic LDPC (QC-LDPC) codes are just a subset of this scheme. Simulation results indicate that the proposed scheme can offer similar error performance and implementation complexity as the popular QC-LDPC codes.

A New Approach for Image Encryption Based on Cyclic Rotations and Multiple Blockwise Diffusions Using Pomeau-Manneville and Sin Maps

  • Hanchinamani, Gururaj;Kulakarni, Linganagouda
    • Journal of Computing Science and Engineering
    • /
    • 제8권4호
    • /
    • pp.187-198
    • /
    • 2014
  • In this paper an efficient image encryption scheme based on cyclic rotations and multiple blockwise diffusions with two chaotic maps is proposed. A Sin map is used to generate round keys for the encryption/decryption process. A Pomeau-Manneville map is used to generate chaotic values for permutation, pixel value rotation and diffusion operations. The encryption scheme is composed of three stages: permutation, pixel value rotation and diffusion. The permutation stage performs four operations on the image: row shuffling, column shuffling, cyclic rotation of all the rows and cyclic rotation of all the columns. This stage reduces the correlation significantly among neighboring pixels. The second stage performs circular rotation of pixel values twice by scanning the image horizontally and vertically. The amount of rotation is based on $M{\times}N$ chaotic values. The last stage performs the diffusion four times by scanning the image in four different ways: block of $8{\times}8$ pixels, block of $16{\times}16$ pixels, principal diagonally, and secondary diagonally. Each of the above four diffusions performs the diffusion in two directions (forwards and backwards) with two previously diffused pixels and two chaotic values. This stage makes the scheme resistant to differential attacks. The security and performance of the proposed method is analyzed systematically by using the key space, entropy, statistical, differential and performance analysis. The experimental results confirm that the proposed method is computationally efficient with high security.

WiBro 시스템을 위한 고속 LDPC 인코더 설계 (Fast Multi-Rate LDPC Encoder Architecture for WiBro System)

  • 김정기;발라카난;이문호
    • 대한전자공학회논문지TC
    • /
    • 제45권7호
    • /
    • pp.1-8
    • /
    • 2008
  • Low Density Parity Check codes(LDPC)는 최근 우수한 성능으로 통신 분야에서 채널 코딩의 중요한 블록으로 주목받고 있다. 그리하여 Wibro를 포함한 여러 표준에서 LDPC 부호를 채널 코딩으로 채택하고 있다. 이러한 LDPC 부호의 Encoder를 구현하는데 있어서의 약점은 기존의 이진 Matrix Vector Multiplier가 throughput의 감소의 원인이 되는 clock cycle이 많다는 것이다. 본 논문은 표준에서 사용되는 H 행렬이 Circulant Permutation Matrix(CPM)로 정의되어 있다는 점을 이용하여 인코더의 구현에 있어서 기존의 Matrix Vector Multiplier 대신에 cyclic shift register와 exclusive-OR을 사용하는 설계구조를 제안한다. 또한, 제안한 구조를 이용하여 WiBro에 포함되는 다양한 부호율에 적용가능한 인코더를 설계하였다. 제안된 WiBro LDPC의 인코더는 기존보다 적은 clock cycle을 가지므로 높은 throughput에 도달한다.

이븐 연결망의 노드 중복 없는 병렬 경로 (Node Disjoint Parallel Paths of Even Network)

  • 김종석;이형옥
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제35권9_10호
    • /
    • pp.421-428
    • /
    • 2008
  • [1]에서 A. Ghafoor는 고장허용 다중컴퓨터에 대한 하나의 모형으로 이븐 연결망 $E_d$를 소개하였고, 최단거리를 갖는 노드 중복 없는 경로를 포함한 여러 가지 성질들을 발표하였다. [1]에서 제안한 노드 중복 없는 경로에 의해 고장 지름을 구하면, 고장 지름은 d+2(d=홀수)와 d+3(d=짝수)이다. 그러나 [1]에서 증명한 노드 중복 없는 경로는 최단 거리가 아니다. 본 논문에서는 이븐 연결망 $E_d$가 노드 대칭임을 보이고, 순환적 교환 순서를 이용하여 이븐 연결망의 최단 거리를 갖는 노드 중복 없는 경로를 제시하고, 고장지름이 d+1임을 증명한다.

A REMARK ON CIRCULANT DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS BY GREGARIOUS CYCLES

  • Cho, Jung Rae
    • East Asian mathematical journal
    • /
    • 제33권1호
    • /
    • pp.67-74
    • /
    • 2017
  • Let k, m and t be positive integers with $m{\geq}4$ and even. It is shown that $K_{km+1(2t)}$ has a decomposition into gregarious m-cycles. Also, it is shown that $K_{km(2t)}$ has a decomposition into gregarious m-cycles if ${\frac{(m-1)^2+3}{4m}}$ < k. In this article, we make a remark that the decompositions can be circulant in the sense that it is preserved by the cyclic permutation of the partite sets, and we will exhibit it by examples.

A CLASSIFICATION OF PRIME-VALENT REGULAR CAYLEY MAPS ON ABELIAN, DIHEDRAL AND DICYCLIC GROUPS

  • Kim, Dong-Seok;Kwon, Young-Soo;Lee, Jae-Un
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.17-27
    • /
    • 2010
  • A Cayley map is a 2-cell embedding of a Cayley graph into an orientable surface with the same local orientation induced by a cyclic permutation of generators at each vertex. In this paper, we provide classifications of prime-valent regular Cayley maps on abelian groups, dihedral groups and dicyclic groups. Consequently, we show that all prime-valent regular Cayley maps on dihedral groups are balanced and all prime-valent regular Cayley maps on abelian groups are either balanced or anti-balanced. Furthermore, we prove that there is no prime-valent regular Cayley map on any dicyclic group.

A DIFFERENCE SET METHOD FOR CIRCULANT DECOMPOSITIONS OF COMPLETE PARTITE GRAPHS INTO GREGARIOUS 4-CYCLES

  • Kim, Eun-Kyung;Cho, Young-Min;Cho, Jung-Rae
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.655-670
    • /
    • 2010
  • The complete multipartite graph $K_{n(m)}$ with n $ {\geq}$ 4 partite sets of size m is shown to have a decomposition into 4-cycles in such a way that vertices of each cycle belong to distinct partite sets of $K_{n(m)}$, if 4 divides the number of edges. Such cycles are called gregarious, and were introduced by Billington and Hoffman ([2]) and redefined in [3]. We independently came up with the result of [3] by using a difference set method, and improved the result so that the composition is circulant, in the sense that it is invariant under the cyclic permutation of partite sets. The composition is then used to construct gregarious 4-cycle decompositions when one partite set of the graph has different cardinality than that of others. Some results on joins of decomposable complete multipartite graphs are also presented.