East Asian Math. J.
Vol. 33 (2017), No. 1, pp. 067-074
YNMS
http://dx.doi.org/10.7858/eamj.2017.007

A REMARK ON CIRCULANT DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS BY GREGARIOUS CYCLES

Jung Rae Сho

Abstract

Let k, m and t be positive integers with $m \geq 4$ and even. It is shown that $K_{k m+1(2 t)}$ has a decomposition into gregarious m-cycles. Also, it is shown that $K_{k m(2 t)}$ has a decomposition into gregarious m-cycles if $\frac{(m-1)^{2}+3}{4 m}<k$. In this article, we make a remark that the decompositions can be circulant in the sense that it is preserved by the cyclic permutation of the partite sets, and we will exhibit it by examples.

1. Introduction

Decompositions of graphs into edge-disjoint cycles has been an active research area for many years. Especially, decompositions by cycles of a fixed length has been considered in many different ways. It is shown that a complete graph of odd orderdegree, or a complete graph of even order minus a 1 -factor, has a decomposition into k-cycles if k divides the number of edges (see [1], [14] and [15] as well as their references). The key factor for all these works was the decomposition of complete bipartite graphs obtained by Sotteau ([19]). Then, many authors began to consider cycle decompositions with special properties ([4], [5], [12], [13]). Especially, Billington and Hoffman ([2]) introduced the notion of gregarious cycles in tripartite graphs. However, the definition of gregarious cycles has been modified in later research articles ([2], [4], [8]).

In this article, we will adopt the notations and the terminology used in [6]. Let $K_{n(t)}$ denote the complete multipartite graph with n partite sets of size t. We call a cycle in a multipartite graph gregarious if it involves at most one vertex from any particular partite set. For simplicity, by γ_{m}-cycle we will mean a gregarious cycle of length m, and by γ_{m}-decomposition a decomposition by γ_{m}-cycles.

[^0]Billington and Hoffman ([3]) and Cho and et el. ([8]) independently showed that $K_{n(2 t)}$ has a γ_{4}-decomposition for $n \geq 4$ if and only if the number of edges is divided by 4. In [9], Cho and Gould showed that $K_{n(2 t)}$ also has a $\gamma_{6^{-}}$ decomposition if and only if the number of edges is divided by 6 . Then, similar decompositions of $K_{n(t)}$ by gregarious cycles of various fixed length followed ([16], [17], [18]).

We say that a decomposition is circulant if it is preserved by the cyclic permutation of the partite sets. That is, if the graph is drawn with the n partite sets placed on a circle (or an n-gon), then the graph is invariant under the rotation by $\frac{2 \pi}{n}$. It will be clearly understood in later explanations and examples later.

In this article, we remark that the decompositions in [7] and [11] are circulant, and exhibit some decompositions by examples.

Because of the following theorem, we may only consider $K_{k m(2)}$ and $K_{k m+1(2)}$ instead of $K_{k m(2 t)}$ and $K_{k m+1(2 t)}$.

Theorem 1.1. Let t be positive integers, m an even integer with $m \geq 4$, and $n \geq m$. If $K_{n(2)}$ has a circulant γ_{m}-decomposition, then so does $K_{n(2 t)}$.
Proof. We adopt the folklore "blow up" method used in [5] and [10]. We blow up each vertex a of $K_{n(2)}$ by replacing it with t new vertices and label them $a_{1}, a_{2}, \ldots, a_{t}$. We now join the vertex a_{i} to the vertex b_{j} if $a b$ is an edge in $K_{n(2)}$. Obviously, this new graph is $K_{m(2 t)}$. Let Φ be a circulant γ_{m}-decomposition of $K_{n(2)}$. If $\lambda=\left\langle a^{(1)}, a^{(2)}, \ldots, a^{(m)}\right\rangle$ is a γ_{m}-cycle in Φ then, for $i=1,2, \ldots, t$ and $j=1,2, \ldots, t$,

$$
\lambda_{i j}=\left\langle a_{i}^{(1)}, a_{j}^{(2)}, a_{i}^{(3)}, a_{j}^{(4)}, \ldots, a_{i}^{(m-1)}, a_{j}^{(m)}\right\rangle,
$$

are t^{2} edge-disjoint γ_{m}-cycles of $K_{n(2 t)}$. The collection of all such cycles of $K_{n(2 t)}$ obtained in this way constitutes a circulant γ_{m}-decomposition of $K_{n(2 t)}$.

2. Cycles from feasible sequences of differences

Throughout the article, m is even with $m \geq 4$.
If $n=k m+1$, let $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ and use the arithmetic modulo n. Then $\mathrm{D}_{n}=\left\{ \pm 1, \pm 2, \ldots, \pm \frac{n-1}{2}\right\}$ is a complete set of differences of two distinct elements in \mathbb{Z}_{n}. In this case, let the partite sets of $K_{n(2)}$ be $A_{0}=\{0, \overline{0}\}$, $A_{1}=\{1, \overline{1}\}, \cdots, A_{n-1}=\{n-1, \overline{n-1}\}$, and put $V=\cup_{i=0}^{n-1} A_{i}$.

If $n=k m$, let $\mathbb{Z}_{n-1}^{\infty}=\{\infty, 0,1, \ldots, n-2\}$. Extending the arithmetic of $\mathbb{Z}_{n-1}=\{0,1, \ldots, n-2\}$ to $\mathbb{Z}_{n-1}^{\infty}$, we define $a \pm \infty=\infty \pm a=\infty$ for $a \in \mathbb{Z}_{n-1}$ and $\infty \pm \infty=0$. Then, since n is even, the set $\mathrm{D}_{n}=\left\{\infty, \pm 1, \pm 2, \ldots, \pm \frac{n-2}{2}\right\}$ is a complete set of differences of two distinct elements in $\mathbb{Z}_{n-1}^{\infty}$. In this case, let the partite sets of $K_{n(2)}$ be $A_{\infty}=\{\infty, \bar{\infty}\}, A_{0}=\{0, \overline{0}\}, A_{1}=\{1, \overline{1}\}, \cdots$, $A_{n-2}=\{n-2, \overline{n-2}\}$, an put $V=A_{\infty} \cup\left(\cup_{i=0}^{n-2} A_{i}\right)$.

When $n=k m+1$, we draw $K_{n(2)}$ on a circle, evenly arranging the partite sets. When $n=k m$, we draw $K_{n(2)}$ on a circular cone, by putting A_{∞} at the top vertex of the cone and arranging $A_{0}, A_{1}, \cdots, A_{n-2}$ at the circle of the cone.

An edge between a vertex in A_{i} and a vertex in A_{j} is called an edge of distance d if $i-j= \pm d$ for some $\pm d$ in D_{n}. In particular, if $d=\infty$ the edge is called an edge of infinite distance because of the obvious reason. For example, in $K_{13(2)}$, the edges $0 \overline{4}$ and $\overline{11} 2$ are edges of distance 4. In $K_{12(2)}$, the edge $10 \overline{2}$ is an edge of distance 3 , while $\infty \overline{3}$ is an edge of infinite distance.

Let $\rho=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ a sequence of elements in D_{n}. The sequence of initial sums, or the s-sequence for short, of ρ is the $\sigma_{\rho}=\left(s_{0}, s_{1}, s_{2}, \ldots, s_{m-1}\right)$ defined by $s_{0}=0$ and $s_{i}=\sum_{j=1}^{i} r_{j}$ for $i=1,2, \ldots, m-1$. Note that all entries of σ_{ρ} belong to \mathbb{Z}_{n} or all to $\mathbb{Z}_{n-1}^{\infty}$, and that $s_{i}=s_{i-1}+r_{i}$ for each $i=1,2, \ldots, m-1$.

Let $\rho=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ be a sequence of elements in D_{n}. We assume that, when $n=k m$ and ρ involves ∞, ρ is of the form $\left(r_{1}, r_{2}, \ldots, r_{m-2}, \infty, \infty\right)$ with none of $r_{1}, r_{2}, \ldots, r_{m-2}$ being ∞. Then, ρ is called a feasible sequence or an f-sequence for short, if
(i) $\sum_{i=1}^{m} r_{i}=0$, that is, the total sum of the terms of the sequence is zero, and
(ii) $\sum_{i=j}^{k} r_{i} \neq 0$ for all j, k with $1<j$ or $k<m$, that is, any proper partial sum of consecutive entries is nonzero.
We may consider an s-sequence σ_{ρ} as an ordering of partite sets involved in a trail or circuit, and if ρ is an f-sequence then the trail or circuit is a γ_{m}-cycle of $K_{k m(2)}$.

Let ϕ^{+}and ϕ^{-}be mappings of \mathbb{Z}_{n} or $\mathbb{Z}_{n-1}^{\infty}$ into V defined by $\phi^{+}(a)=a$ and $\phi^{-}(a)=\bar{a}$ for all a in \mathbb{Z}_{n} or $\mathbb{Z}_{n-1}^{\infty}$. A flag is a sequence $\phi^{*}=\left(\phi_{0}, \phi_{1}, \ldots, \phi_{m-1}\right)$ of ϕ^{+}and ϕ^{-}. Given a flag ϕ^{*}, we also use the same notation ϕ^{*} to denote the mapping defined on $\left(\mathbb{Z}_{n-1}^{\infty}\right)^{m}$ by

$$
\phi^{*}\left(a_{0}, a_{1}, \ldots, a_{m-1}\right)=\left\langle\phi_{0}\left(a_{0}\right), \phi_{1}\left(a_{1}\right), \ldots, \phi_{m-1}\left(a_{m-1}\right)\right\rangle .
$$

Let $\tau: V \rightarrow V$ be the mapping defined by $\tau(a)=a+1$ and $\tau(\bar{a})=\overline{a+1}$ for a in \mathbb{Z}_{n} or $\mathbb{Z}_{n-1}^{\infty}$. That is, τ is the permutation on the vertex set V, defined by a product of cycles as

$$
\tau=(0,1,2, \cdots, n-1)(\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}), \text { when } n=k m+1
$$

or the permutation

$$
\tau=(0,1,2, \cdots, n-2)(\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-2})(\infty)(\bar{\infty}), \text { when } n=k m
$$

Thus, τ can be regraded as a permutation of partite sets as well.
Now, we define a mapping τ_{*} on the set of γ_{m}-cycles by

$$
\tau_{*}\left(\left\langle\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m-1}\right\rangle\right)=\left\langle\tau\left(\alpha_{0}\right), \tau\left(\alpha_{1}\right), \ldots, \tau\left(\alpha_{m-1}\right)\right\rangle
$$

where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m-1}$ are elements of V.

Now, if a pair $\left(\rho, \phi^{*}\right)$ of an f-sequence and a flag is given, we can generate a class of γ_{m}-cycles. $\left\{\tau_{*}^{i}\left(\phi^{*}\left(\sigma_{\rho}\right)\right) \mid i \in \mathbb{Z}_{n}\right\}$ if $n=k m+1$ or $\left\{\tau_{*}^{i}\left(\phi^{*}\left(\sigma_{\rho}\right)\right) \mid i \in\right.$ $\left.\mathbb{Z}_{n-1}\right\}$ if $n=k m$. Note that both classes are invariant under τ_{*}. We call a decomposition circulant if the decomposition is invariant under τ_{*}.

The above procedure is the method to produce a γ_{m}-decomposition of $K_{n(2)}$ or $K_{n+1(2)}$. The remaining problem then is how to choose pairs of f-sequences and flags so that, in the γ_{m}-cycles produced by these pairs, each of the edges $p q, \bar{p} q, p \bar{q}$ and $\bar{p} \bar{q}$ of distance d appears exactly once for every possible distance d.

Note that, in the above procedure, a γ_{m}-decomposition is obtained from a set of specified γ_{m}-cycles by applying τ_{*} repeatedly. Therefore, the decomposition is circulant.

We will also see a basic difference between the γ_{m}-decompositions when $n=$ $k m+1$ and $n=k m$.

3. Examples when $n=k m$

In this section, m is even with $m \geq 4$ and $\frac{(m-1)^{2}+3}{4 m}<k$. Put $n=k m$. The number of edges in $K_{k m(2)}$ is $2 k m(k m-1)=2 k m(n-1)$. The author of [11] obtained a γ_{m}-decomposition by producing $2 k(n-1)$ edge-disjoint γ_{m}-cycles in $2 k$ classes, each containing $n-1 \gamma_{m}$-cycles.

Given $K_{k m(2)}$, the procedure to produce pairs of f-sequences and flags is explained in [11]. We present two examples in this section following the procedure.

Example 3.1. (m is not divisible by 4.) Let $m=6$ and $k=2$. We have $n=k m=12$ and $\mathrm{D}_{12}=\{\infty, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. Following [11], we have two f -sequences

$$
\rho=(1,2,1,2, \infty,-\infty) \quad \text { and } \quad \lambda=(3,-4,5,4,-3,-5) .
$$

Then the corresponding s-sequences are

$$
\sigma_{\rho}=(0,1,3,4,6, \infty) \quad \text { and } \quad \sigma_{\lambda}=(0,3,10,4,8,5)
$$

Apply two flags

$$
\phi_{1}^{*}=\left(\phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{-}\right) \quad \text { and } \quad \phi_{2}^{*}=\left(\phi^{-}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{+}, \phi^{+}\right)
$$

specified in [11] to σ_{ρ}, and we obtain two γ_{6}-cycles

$$
\phi_{1}^{*}\left(\sigma_{\rho}\right)=\langle 0,1, \overline{3}, \overline{4}, \overline{6}, \bar{\infty}\rangle \quad \text { and } \quad \phi_{2}^{*}\left(\sigma_{\rho}\right)=\langle\overline{0}, 1,3, \overline{4}, 6, \infty\rangle .
$$

Apply two flags

$$
\psi_{1}^{*}=\left(\phi^{+}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right) \quad \text { and } \quad \psi_{2}^{*}=\left(\phi^{-}, \phi^{+}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{+}\right)
$$

specified in [11] to σ_{λ}, and we obtain two γ_{6}-cycles

$$
\psi_{1}^{*}\left(\sigma_{\lambda}\right)=\langle 0,3,10,4, \overline{8}, \overline{5}\rangle \quad \text { and } \quad \psi_{2}^{*}\left(\sigma_{\lambda}\right)=\langle\overline{0}, 3, \overline{10}, \overline{4}, \overline{8}, 5\rangle .
$$

Now, we apply τ_{*}^{i} for $i=0,1, \cdots, 10$ to each of the above four γ_{6}-cycles, and then obtain the circulant γ_{6}-decomposition

$$
\left\{\tau_{*}^{i}\left(\phi_{1}^{*}\left(\sigma_{\rho}\right)\right), \tau_{*}^{i}\left(\phi_{2}^{*}\left(\sigma_{\rho}\right)\right), \tau_{*}^{i}\left(\psi_{1}^{*}\left(\sigma_{\lambda}\right)\right), \tau_{*}^{i}\left(\psi_{2}^{*}\left(\sigma_{\lambda}\right)\right) \mid 0 \leq i \leq 10\right\}
$$

which can be partitioned into four classes, each with $11 \gamma_{6}$-cycles. We list them as below. In Figure A, two γ_{6}-cycles $\phi_{1}^{*}\left(\sigma_{\rho}\right)=\langle 0,1, \overline{3}, \overline{4}, \overline{6}, \bar{\infty}\rangle$ and $\tau_{*}^{5}\left(\phi_{1}^{*}\left(\sigma_{\rho}\right)\right)=$ $\langle 5,6, \overline{8}, \overline{9}, \overline{0}, \bar{\infty}\rangle$ of $K_{12(2)}$ are exhibited. Note that $\tau_{*}^{5}\left(\phi_{1}^{*}\left(\sigma_{\rho}\right)\right)$ is obtained by rotating vertices of $\phi_{1}^{*}\left(\sigma_{\rho}\right)$ on the circle by angle $4 \cdot \frac{2 \pi}{11}$ counterclockwise while fixing the vertex $\bar{\infty}$.

,	$\langle\overline{0}, 1,3, \overline{4}, 6, \infty\rangle$,	$\langle 0,3,10,4, \overline{8}, \overline{5}\rangle$,	$\langle\overline{0}, 3, \overline{10}, \overline{4}, \overline{8}, 5\rangle,$
	$\langle\overline{1}, 2,4, \overline{5}, 7, \infty\rangle$	$\langle 1,4,0,5, \overline{9}, \overline{6}\rangle$	$\langle\overline{1}, 4, \overline{0}, \overline{5}, \overline{9}, 6\rangle$
$\langle 2,3, \overline{5}, \overline{6}, \overline{8}, \bar{\infty}\rangle$,	$\langle\overline{2}, 3,5, \overline{6}, 8$,	$\langle 2,5,1,6, \overline{10}, \overline{7}\rangle$	$\overline{2}, 5, \overline{1}, \overline{6}, \overline{10}, 7$
$\langle 3,4, \overline{6}, \overline{7}, \overline{9}, \bar{\infty}\rangle$,	$\langle\overline{3}, 4,6, \overline{7}, 9, \infty\rangle$	$\langle 3,6,2,7, \overline{0}, \overline{8}\rangle$	
$\langle 4,5, \overline{7}, \overline{8}, \overline{10}, \bar{\infty}\rangle$,	$\langle\overline{4}, 5,7, \overline{8}, 10, \infty$	$\langle 4,7,3,8, \overline{1}, \overline{9}\rangle$	
$\langle 5,6, \overline{8}, \overline{9}, \overline{0}, \bar{\infty}\rangle$,	$\langle\overline{5}, 6,8, \overline{9}, 0, \infty\rangle$	$\langle 5,8,4,9, \overline{2}, \overline{10}\rangle$	$\langle\overline{5}, 8, \overline{4}, \overline{9}, \overline{2}, 10\rangle$
$\langle 6,7, \overline{9}, \overline{10}, \overline{1}, \bar{\infty}\rangle$,	$\langle\overline{6}, 7,9, \overline{10}, 1, \infty$	$\langle 6,9,5,10, \overline{3}, \overline{0}\rangle$	$\langle\overline{6}, 9, \overline{5}, \overline{10}, \overline{3}, 0$
$\langle 7,8, \overline{10}, \overline{0}, \overline{2}, \bar{\infty}\rangle$,	$\langle\overline{7}, 8,10, \overline{0}, 2, \infty$	$\langle 7,10,6,0, \overline{4}, \overline{1}\rangle$,	$\overline{7}, 10, \overline{6}, \overline{0}, \overline{4}$,
$\langle 8,9, \overline{0}, \overline{1}, \overline{3}, \bar{\infty}\rangle$,	$\langle\overline{8}, 9,0, \overline{1}, 3, \infty)$	$\langle 8,0,7,1, \overline{5}, \overline{2}\rangle$	〈 $\overline{8}, 0$,
$\langle 9,10, \overline{1}, \overline{2}, \overline{4}, \bar{\infty}\rangle$,	$\langle\overline{9}, 10,1, \overline{2}, 4, \infty$,	$\langle 9,1,8,2, \overline{6}, \overline{3}\rangle$	$\langle\overline{9}, 1, \overline{8}, \overline{2}$,
$0,0, \overline{2}, \overline{3}, \overline{5}, \bar{\infty}\rangle$,	$\langle\overline{10}, 0,2, \overline{3}, 5, \infty\rangle$	$\langle 10,2,9,3, \overline{7}, \overline{4}\rangle$	$\langle\overline{10}, 2, \overline{9}, \overline{3}, \overline{7}, 4\rangle$

Example 3.2. (m is divisible by 4.) Let $m=8$ and $k=3$. Then $n=k m=24$ and $D_{24}=\{\infty, \pm 1, \pm 2, \ldots, \pm 11\}$. Following [11], we have three f-sequences

$$
\begin{aligned}
& \rho=(1,2,3,1,2,3, \infty,-\infty), \quad \lambda=(4,-5,6,-7,-6,5,-4,7) \\
& \quad \text { and } \quad \eta=(8,-9,10,-11,-10,9,-8,11),
\end{aligned}
$$

and the corresponding s-sequences are

$$
\begin{aligned}
& \sigma_{\rho}=(0,1,3,6,7,9,12, \infty), \quad \sigma_{\lambda}=(0,4,22,5,21,15,20,16) \\
& \quad \text { and } \quad \sigma_{\eta}=(0,8,22,9,21,11,20,12),
\end{aligned}
$$

respectively. Applying two flags

$$
\phi_{1}^{*}=\left(\phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{+}, \phi^{-}, \phi^{-}\right) \quad \text { and } \quad \phi_{2}^{*}=\left(\phi^{-}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}, \phi^{+}, \phi^{+}\right)
$$

specified in [11] to σ_{ρ}, we obtain two γ_{8}-cycles

$$
\phi_{1}^{*}\left(\sigma_{\rho}\right)=\langle 0,1, \overline{3}, \overline{6}, \overline{7}, 9, \overline{12}, \bar{\infty}\rangle \quad \text { and } \quad \phi_{2}^{*}\left(\sigma_{\rho}\right)=\langle\overline{0}, 1,3,6, \overline{7}, \overline{9}, 12, \infty\rangle .
$$

Applying another two flags

$$
\psi_{1}^{*}=\left(\phi^{+}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{+}, \phi^{-}\right) \text {and } \psi_{2}^{*}=\left(\phi^{-}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{+}, \phi^{-}, \phi^{+}\right)
$$

specified in [11] to both σ_{λ} and σ_{η}, we obtain four γ_{8}-cycles

$$
\begin{array}{ll}
\psi_{1}^{*}\left(\sigma_{\lambda}\right)=\langle 0,4,22,5,21, \overline{15}, 20, \overline{16}\rangle, & \psi_{2}^{*}\left(\sigma_{\lambda}\right)=\langle\overline{0}, \overline{4}, \overline{22}, \overline{5}, \overline{21}, 15, \overline{20}, 16\rangle, \\
\psi_{1}^{*}\left(\sigma_{\eta}\right)=\langle 0,8,22,9,21, \overline{11}, 20, \overline{12}\rangle, & \psi_{2}^{*}\left(\sigma_{\eta}\right)=\langle\overline{0}, \overline{8}, \overline{22}, \overline{9}, 2 \overline{21}, 11, \overline{20}, 12\rangle .
\end{array}
$$

Applying τ_{*}^{i} for $i=0,1, \cdots, 22$ to each of the above six γ_{8}-cycles, we obtain six classes, each with $23 \gamma_{8}$-cycles. These constitute a circulant γ_{8}-decomposition of $K_{24(2)}$.

4. Examples when $n=k m+1$

In this section, m is even with $m \geq 4$. Put $n=k m+1$. The number of edges in $K_{k m+1(2)}$ is $2(k m+1) k m=2 k m n$. The author of [7] obtained a γ_{m}-decomposition by producing $2 k n$ edge-disjoint γ_{m}-cycles in $2 k$ classes, each containing $n \gamma_{m}$-cycles.

Given $K_{k m+1(2)}$, the procedure to produce pairs of f-sequences and flags is explained in [7]. We present two examples in this section following the procedure.

Example 4.1. (m is not divisible by 4.) Let $m=10$ and $k=2$. Then, $n=k m+1=21$ and $\mathrm{D}_{21}=\{ \pm 1, \pm 2, \ldots, \pm 10\}$. Following [7], we have two f -sequences

$$
\rho=(1,-2,3,-4,5,4,-3,2,-1,-5) \text { and } \lambda=(6,-7,8,-9,10,9,-8,7,-6,-10) .
$$

Then, the corresponding s-sequences are

$$
\sigma_{\rho}=(0,1,20,2,19,3,7,4,6,5) \text { and } \sigma_{\lambda}=(0,6,20,7,19,8,17,9,16,10),
$$

respectively. Applying two flags

$$
\phi_{1}^{*}=\left(\phi^{+}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{+}, \phi^{-}, \phi^{-}\right) \text {and } \phi_{2}^{*}=\left(\phi^{-}, \phi^{+}, \phi^{-}, \phi^{+}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{+}\right)
$$

specified in [11] to both σ_{ρ} and σ_{λ}, we obtain the following four starter cycles.

$$
\begin{array}{ll}
\phi_{1}^{*}\left(\sigma_{\rho}\right)=\langle 0,1,20,2,19,3, \overline{7}, 4, \overline{6}, \overline{5}\rangle, & \phi_{2}^{*}\left(\sigma_{\rho}\right)=\langle\overline{0}, 1, \overline{20}, 2, \overline{19}, \overline{3}, \overline{7}, \overline{4}, \overline{\overline{6}}, 5\rangle, \\
\phi_{1}^{*}\left(\sigma_{\lambda}\right)=\langle 0,6,20,7,19,8, \overline{17}, 9, \overline{16}, \overline{10}\rangle, & \phi_{2}^{*}\left(\sigma_{\lambda}\right)=\langle\overline{0}, 6, \overline{20}, 7, \overline{19}, \overline{8}, \overline{17}, \overline{9}, \overline{16}, 10\rangle .
\end{array}
$$

Applying τ_{*}^{i} for $i=0,1, \cdots, 20$ to each of the above γ_{10}-cycles, we obtain four classes, each with 21 gregarious 10 -cycles. These constitute a circulant $\gamma_{10^{-}}$ decomposition of $K_{21(2)}$. In Figure B, two γ_{10}-cycles $\phi_{1}^{*}\left(\sigma_{\rho}\right)$ and $\tau_{*}^{9}\left(\phi_{1}^{*}\left(\sigma_{\rho}\right)\right)=$ $\langle 9,10,8,11,7,12, \overline{16}, 13, \overline{15}, \overline{14}\rangle$ of $K_{21(2)}$ are exhibited. Note that, $\tau_{*}^{9}\left(\phi_{1}^{*}\left(\sigma_{\rho}\right)\right)$ is obtained by rotating $\phi_{1}^{*}\left(\sigma_{\rho}\right)$ by angle $8 \cdot \frac{2 \pi}{21}$ counterclockwise.

Example 4.2. (m is divisible by 4.) Let $m=8$ and $k=3$. Then, $n=k m+1=$ 25 and $\mathrm{D}_{25}=\{ \pm 1, \pm 2, \ldots, \pm 12\}$. Following [7], we have three f-sequences

$$
\begin{aligned}
& \rho=(1,-2,3,-4,-3,2,-1,4), \quad \lambda=(5,-6,7,-8,-7,6,-5,8) \\
& \quad \text { and } \quad \eta=(9,-10,11,-12,-11,10,-9,12) .
\end{aligned}
$$

The corresponding s-sequences are

$$
\begin{aligned}
& \sigma_{\rho}=(0,1,24,2,23,20,22,21), \quad \sigma_{\lambda}=(0,5,24,6,23,16,22,17) \\
& \quad \text { and } \quad \sigma_{\eta}=(0,9,24,10,23,12,22,13),
\end{aligned}
$$

respectively. Applying two flags

$$
\phi_{1}^{*}=\left(\phi^{+}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{+}, \phi^{-}\right) \text {and } \phi_{2}^{*}=\left(\phi^{-}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{-}, \phi^{+}, \phi^{-}, \phi^{+}\right)
$$

specified in [7] to each of the three s-sequences, we obtain the following six starter cycles.

$$
\begin{array}{ll}
\phi_{1}^{*}\left(\sigma_{\rho}\right)=\langle 0,1,24,2,23, \overline{20}, 22, \overline{21}\rangle, & \phi_{2}^{*}\left(\sigma_{\rho}\right)=\langle\overline{0}, \overline{1}, \overline{2}, \overline{2}, \overline{23}, 20, \overline{22}, 21\rangle, \\
\phi_{1}^{*}\left(\sigma_{\lambda}\right)=\langle 0,5,24,6,23, \overline{16}, 22, \overline{17}\rangle, & \phi_{2}^{*}\left(\sigma_{\lambda}\right)=\langle\overline{0}, \overline{5}, \overline{24}, \overline{6}, \overline{23}, 16, \overline{22}, 17\rangle, \\
\phi_{1}^{*}\left(\sigma_{\eta}\right)=\langle 0,9,24,10,23, \overline{12}, 22, \overline{13}\rangle, & \phi_{2}^{*}\left(\sigma_{\eta}\right)=\langle\overline{0}, \overline{9}, \overline{24}, \overline{10}, \overline{23}, 12, \overline{22}, 13\rangle .
\end{array}
$$

Applying τ_{*}^{i} for $i=0,1, \cdots, 24$ to each of the above γ_{8}-cycles, we obtain six classes, each with 25 gregarious 8 -cycles. These constitute a circulant $\gamma_{8^{-}}$ decomposition of $K_{25(2)}$.

References

[1] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$. J. Combin. Theory Ser. B 81(2001), 77-99.
[2] E. Billington and D. G. Hoffman, Decomposition of complete tripartite graphs into gregarious 4-cycles. Discrete Math. 261(2003), 87-111.
[3] E. Billington and D. G. Hoffman, Equipartite and almost-equipartite gregarious 4-cycle decompositions, Discrete Math. 308(2008), no. 5-6, 696714.
[4] E. Billington, D. G. Hoffman and C. A. Rodger, Resolvable gregarious cycle decompositions of complete equipartite graphs. Discrete Math. 308(2008), no. 13, 28442853.
[5] N. J. Cavenagh and E. J. Billington, Decompositions of complete multipartite graphs into cycles of even length. Graphs and Combinatorics 16(2000), 49-65.
[6] G. Chartrand and L. Lesniak, Graphs and digraphs, 4th Ed., Chapman \& Hall/CRC, Boca Raton, 2005.
[7] J. R. Cho, Circulant decompositions of certain multipartite graphs into Gregarious cycles of a given length. East Asian Math. J. 30(2014), No. 3, 311-319.
[8] J. R. Cho, M. J. Ferrara, R. J. Gould and J. R. Schmitt, A difference set method for circular decompositions of complete mutipartite graphs into gregarious 4-cycles. Research note, 2006.
[9] J. R. Cho and R. J. Gould, Decompositions of complete multipartite graphs into gregarious 6 -cycles using complete differences. Journal of the Korean Mathematical Society 45(2008) 1623-1634.
[10] E. K. Kim, Y. M. Cho, and J. R. Cho, A difference set method for circulant decompositions of complete partite graphs into gregarious 4-cycles. East Asian Mathematical Journal 26(2010) 655-670.
[11] S. Kim, On decomposition of the complete graphs $K_{k m(2 t)}$ into gregarious m-cycles. East Asian Mathematical Journal 29(2013)349-353.
[12] J. Liu, A generalization of the Oberwolfach problem with uniform tables. J. Combin. Theory Ser. A 101(2003), 20-34.
[13] J. Liu, The equipartite Oberwolfach problem and C_{t}-factorizations of complete equipartite graphs. J. Combin. Designs 9(2000), 42-49.
[14] M. Šajna, On decomposiing $K_{n}-I$ into cycles of a fixed odd length. Descrete Math. 244(2002), 435-444.
[15] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles. J. Combin. Designs 10(2002), 27-78.
[16] B. R. Smith, Decomposing complete equipartite graphs into cycles of length $2 p$. J. Combin. Des. 16 (2008), no. 3, 244252.
[17] B. R. Smith, Complete equipartite $3 p$-cycle systems. Australas. J. Combin. 45 (2009), 125138.
[18] B. R. Smith and N. Cavenagh, Decomposing complete equipartite graphs into odd squarelength cycles: number of parts even. Discrete Math. 312(2012), no. 10, 16111622.
[19] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$. J. Combin. Theory Ser B. 30(1981), 75-81.

Jung Rae Cho
Department of Mathematics
Pusan National University
Busan, 609-735, KOREA
E-mail address: jungcho@pusan.ac.kr

[^0]: Received December 16, 2016; Accepted December 26, 2016. 2010 Mathematics Subject Classification. 05B10, 05C38, 05C70.
 Key words and phrases. multipartite graphs, gregarious cycles, circulant decomposition. This work was supported by a 2-year Research Grant of Pusan National University.

