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A CLASSIFICATION OF PRIME-VALENT REGULAR
CAYLEY MAPS ON ABELIAN, DIHEDRAL

AND DICYCLIC GROUPS

Dongseok Kim, Young Soo Kwon, and Jaeun Lee

Abstract. A Cayley map is a 2-cell embedding of a Cayley graph into
an orientable surface with the same local orientation induced by a cyclic
permutation of generators at each vertex. In this paper, we provide
classifications of prime-valent regular Cayley maps on abelian groups,
dihedral groups and dicyclic groups. Consequently, we show that all
prime-valent regular Cayley maps on dihedral groups are balanced and all
prime-valent regular Cayley maps on abelian groups are either balanced
or anti-balanced. Furthermore, we prove that there is no prime-valent
regular Cayley map on any dicyclic group.

1. Introduction

In this paper, we only consider undirected finite connected graphs without
loops and multiple edges. For a simple graph Γ, an arc of Γ is an ordered pair
(x, y) of adjacent vertices of Γ. Thus, every edge of Γ gives rise to a pair of
opposite arcs. By V (Γ), E(Γ), D(Γ) and Aut (Γ), we denote the vertex set, the
edge set, the arc set and the automorphism group of Γ, respectively. A graph Γ
is said to be vertex-transitive, edge-transitive and arc-transitive if Aut (Γ) acts
transitively on the vertex set, the edge set and the arc set of Γ, respectively. A
graph Γ is one-regular if Aut (Γ) is arc-transitive and the stabilizer of each arc
in Aut (Γ) is trivial. We consider Aut (Γ) as an acting group on V (Γ), E(Γ)
and D(Γ) according to the context.

For a simple graph Γ with arc set D, an embedding of Γ or a map with the
underlying graph Γ is a triple M = (D;R,L), where R is a permutation of D
whose orbits coincide with the sets of arcs based at the same vertex and L is an
involution ofD whose orbits are the pairs of arcs induced by the same edge. The
permutations R and L are called a rotation and an arc-reversing involution of
M, respectively. Let Mon(M) be the permutation group 〈R,L〉 generated by R
and L and call it a monodromy group of M. Then, Mon(M) acts transitively
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on D. Given two maps M1 = (D1;R1, L1) and M2 = (D2;R2, L2), a map
isomorphism φ : M1 →M2 is a graph isomorphism between underlying graphs
such that φR1(x, y) = R2φ(x, y) for every arc (x, y) ∈ D1. In particular, if
M1 = M2 = M, then φ is called a map automorphism on M. It follows that
the automorphism group Aut (M) of M acts semi-regularly on D. If the action
of Aut (M) on D is regular, then the map itself is called regular. It was shown
that a map M is regular if and only if the monodromy group of a map M acts
regularly on D [9].

Let G be a group and let X = X−1 be a unit-free set of G such that
〈X〉 = G. A Cayley graph Γ = Cay (G,X) is a graph with vertex set G and
two vertices g and h are adjacent if and only if g−1h ∈ X. The set of left
translations G̃ = {Lg | g ∈ G}, defined by Lg(x) = gx forms a vertex-regular
subgroup of Aut (Γ). A Cayley graph Cay (G,X) is normal if the left regular
representation G̃ is a normal subgroup of Aut (Cay (G,X)). Note that the arc
set D of the Cayley graph Cay (G,X) is {(g, gx) | g ∈ G, x ∈ X}. Let q
be a cyclic permutation of X. Then, a Cayley map CM(G,X, q) is the map
M = (D;R,L) with the rotation defined by R(g, gx) = (g, gq(x)) and the
arc-reversing involution L defined by L(g, gx) = (gx, g), where g ∈ G and
x ∈ X. It is easy to see that for every g ∈ G, LgR = RLg, hence G̃ is a
subgroup of Aut (M) acting regularly on vertices. Furthermore, a Cayley map
M = CM(G,X, q) is regular if and only if there exists an automorphism ρ in
the stabilizer (Aut (M))v of a vertex v cyclically permuting the |X| arcs based
at v. In this case, Aut (M) is a product of G̃ with a cyclic group 〈ρ〉 ∼= Zn,
where n = |X| (see [4, 5]).

For an integer t, a Cayley map M = CM(G,X, q) is t-balanced if q(x)−1 =
qt(x−1) for every x ∈ X. In particular, a Cayley map M is balanced if it is
1-balanced. A balanced Cayley map CM(G,X, q) is regular if and only if there
exists a group automorphism ψ of G whose restriction on X is equal to q [12].
In this case, the group G̃ is a normal subgroup of Aut (M) and Aut (M) is
a semidirect product of G̃ by 〈ψ〉. On the other hand, a Cayley map M is
anti-balanced if M is (−1)-balanced [13]. For more general theory of Cayley
maps and their automorphisms, the reader is referred to [4, 5].

For any positive integer n, Dn =
〈
a, b | an = b2 = (ab)2 = 1

〉
is the dihedral

group of order 2n and Dic n =
〈
a, b | a2n = 1, b2 = an and b−1ab = a−1

〉
is the

dicyclic group of order 4n. It is known [6, 8] that their automorphism groups
are

Aut (Dn) = {σi,j | σi,j(a) = ai, σi,j(b) = ajb, i, j ∈ {1, 2, . . . , n}
and (i, n) = 1},

and

Aut (Dic n) = {αi,j | αi,j(a) = ai, αi,j(b) = ajb, i, j ∈ {1, 2, . . . , 2n}
and (i, 2n) = 1}.
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In [1], M. Conder et al. developed a general theory of t-balanced Cayley maps
and classified regular anti-balanced Cayley maps on abelian groups. In [6] and
[8], J. H. Kwak et al. classified regular t-balanced Cayley maps on dihedral
groups and dicyclic groups. This paper focuses on the classification of prime-
valent regular Cayley maps on abelian groups, dihedral groups and dicyclic
groups. The main results are stated as the following three theorems.

Theorem 1.1. For any prime p, let M = CM(G,X, q) be a p-valent regular
Cayley maps on abelian group G. Then M is either balanced or anti-balanced.
Moreover,

(1) if M is balanced, then M is isomorphic to CM(Zn
2 , X1, q1) for some

elementary abelian 2-group Zn
2 , X1 ⊂ Zn

2 and a cyclic permutation q1
of X1 such that
(i) X1 = {Aix | 0 ≤ i ≤ p − 1 } for some A ∈ GL n(2) and x ∈ Zn

2

satisfying that p is the smallest positive integer such that Ap = I
and

〈
x, Ax, A2x, . . . , Ap−1x

〉
= Zn

2 ,

(ii) q1(Aix) = Ai+1x for any i ∈ {0, 1, . . . , p− 1}.
(2) If M is anti-balanced, then M is isomorphic to

CM(Z2p, X2 = {1, 3, . . . , 2p− 1}, q2 = (1 3 · · · 2p− 1)).

Theorem 1.2. For any prime p, any p-valent regular Cayley map M =
CM(Dn, X, q) on a dihedral group is balanced. Furthermore, M is isomor-
phic to

CM(Dn, X1 =
{
a
Pt

j=0 `j

b | 0 ≤ t ≤ p− 1
}
,

q1 = (b ab a`+1b · · · a`p−2+`p−3+···+1b))
for some positive integer ` < n such that p is the smallest positive integer
satisfying that `p−1 + `p−2 + · · ·+ 1 ≡ 0 (mod n).

Theorem 1.3. For any prime p, there is no p-valent regular Cayley map on
a dicyclic group.

Our paper is organized as follows. In Section 2, we review some known results
on maps, Cayley maps and transitive permutation groups of prime degree. In
Section 3, the classifications of prime-valent regular Cayley maps on abelian
groups, dihedral groups and on dicyclic groups are given. Furthermore, we give
some remark that for fixed prime p, the underlying Cayley graphs of p-valent
regular Cayley maps on dihedral groups are one-regular with finitely many
exceptions.

2. Preliminaries

In this section, we review some results needed in the proofs of our main
theorems.

For a k-valent Cayley map M = CM(Γ, X, q = (x1 x2 · · ·xk)), let κ be the
involution on the set {1, 2, . . . , k} such that for any i = 1, 2, . . . , k, x−1

i = xκ(i)
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and call it the distribution of inverses of M. We denote the group generated
by two permutations (1 2 · · · k) and κ by H(κ). For any i = 1, 2, . . . , k, we
denote the stabilizer of i under H(κ)-action by H(κ)i.

Proposition 2.1 ([10]). Let M = CM(G,X, q = (x1 x2 · · ·xk)) = (D;R,L)
be a k-valent Cayley map with the distribution of inverses κ. Then, there exists
a group epimorphism f : Mon (M) → H(κ) such that f(R) = (1 2 · · · k),
f(L) = κ and G is isomorphic to f−1(H(κ)i)/Mon (M)e for some arc e ∈ D
and for some i ∈ {1, 2, . . . , k} satisfying f(Mon (M)e) ≤ H(κ)i.

Proposition 2.1 implies that if M = CM(G,X, q = (x1 x2 · · ·xk)) = (D;
R,L) is a regular k-valent Cayley map with the distribution of inverses κ,
then there exists a group epimorphism f : Mon (M) → H(κ) such that G is
isomorphic to f−1(H(κ)i) for some i, 1 ≤ i ≤ k. It means that there is an
epimorphism g : G→ H(κ)i. Note that for any i, j, 1 ≤ i, j ≤ k, two stabilizers
H(κ)i and H(κ)j are isomorphic because the group H(κ) acts transitively on
the set {1, 2, . . . , k}.

The following proposition gives a classification of transitive permutation
groups of prime degree.

Proposition 2.2 ([2]). Let G be a transitive permutation group of prime degree
p. Then, G is isomorphic to one of the followings:

(i) the symmetric group Sp or the alternating group Ap;
(ii) a subgroup of AGL 1(p), 1-dimensional affine group over the field F of

order p;
(iii) a permutation representation of PSL 2(11) of degree 11;
(iv) one of the Mathiew groups M11 or M23 of degree 11 or 23, respectively;
(v) a projective group H with PSL d(q) ≤ H ≤ PΓLd(q) of degree p = qd−1

q−1 .

Proposition 2.3 ([3]). For any positive integer d > 1 and for any prime power
q, the projective special linear group PSL d(q) is simple except for PSL 2(2) and
PSL 2(3). Moreover, PSL 2(2) ∼= S3, PSL 2(3) ∼= A4 and PSL 2(4) ∼= A5.

J. Širáň and M. Škoviera characterized regular balanced Cayley maps as
follows.

Theorem 2.4 ([12]). A Cayley map M = CM(G,X, q) is a regular balanced
if and only if there exists an automorphism ρ of the group G whose restriction
on X is equal to q.

M. Conder et al. classified regular anti-balanced Cayley maps on abelian
groups. The classification implies the following result.

Proposition 2.5 ([1]). For a fixed prime p ≥ 3, let M = CM(G,X, q) be
a p-valent regular anti-balanced Cayley map on abelian group. Then, M is
isomorphic to the Cayley map CM(Z2p, X1, q1), where

X1 = {1, 3, . . . , 2p− 1} and q1 = (1 3 · · · 2p− 1).
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Note that the underlying graph in Proposition 2.5 is the complete bipartite
graph Kp,p.

In [6] and [8], J. H. Kwak et al. classified regular t-balanced Cayley maps
on dihedral groups and dicyclic groups as follows.

Theorem 2.6 ([6]). Let M = CM(Dn, X, q) be a regular anti-balanced Cayley
map on a dihedral group with |X| ≥ 3. Then, n is even number 2n′, |X| = 4
and M is isomorphic to a Cayley map CM(Dn, X = {b, a, a2kb, a−1}, q =
(b a a2kb a−1)) for some k satisfying k2 ≡ −1 (mod n′).

Theorem 2.7 ([8]). Let M = CM(Dic n, X, q) be a regular t-balanced Cayley
map on a dicyclic group with |X| ≥ 3. Then, t = 1, i.e., M is balanced, and
M is isomorphic to a Cayley map CM(Dic n, X, q) with the cyclic permutation

q = (b ab ai+1b · · · air−2+ir−3+···+i+1

anb an+1b an+i+1b · · · an+ir−2+ir−3+···+i+1)

on X, where 1 ≤ i ≤ 2n− 1, (i, 2n) = 1, r ≥ 2 and ir−1 + ir−2 + · · ·+ i+1 ≡ n
(mod 2n).

For any positive integers n, k and ` < n such that k is the smallest positive
integer satisfying `k−1 + `k−2 + · · ·+ 1 ≡ 0 (mod n), the Cayley map

CM(Dn, X = {b, ab, a`+1b, . . . , a`k−2+`k−3+···+1b},
q = (b ab a`+1b · · · a`k−2+`k−3+···+1b))

is known to be a regular balanced Cayley map [14]. For our convenience, let
T be the set of all triples (n, `, k) of positive integers such that ` < n and k is
the smallest integer satisfying `k−1 + `k−2 + · · · + 1 ≡ 0 (mod n). We denote
the above Cayley map by CM(n, `, k). Then, the following theorem holds.

Theorem 2.8 ([14]). Let M = CM(Dn, X, q) be a k-valent regular balanced
Cayley map. Then, the map M is isomorphic to a Cayley map CM(n, `, k),
namely,

CM(Dn, X = {b, ab, a`+1b, . . . , a`k−2+`k−3+···+1b},
q = (b ab a`+1b · · · a`k−2+`k−3+···+1b))

for some triple (n, `, k) ∈ T . Moreover, for any two triples (n, `1, k), (n, `2, k) ∈
T , the regular balanced Cayley maps CM(n, `1, k) and CM(n, `2, k) are isomor-
phic if and only if `1 = `2.

Theorem 2.8 implies that for any fixed integer k ≥ 3, {CM(n, `, k) | (n, `, k)
∈ T } is the set of all k-valent regular balanced Cayley maps on the dihedral
groups up to isomorphisms.
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3. Classifications of prime-valent Cayley maps

In this section, we classify prime-valent regular Cayley maps on abelian
groups, dihedral groups and dicyclic groups, respectively. First, we prove the
following lemmas.

Lemma 3.1. For an odd prime p, let G be a permutation group of degree p
generated by ρ = (1 2 3 · · · p) and κ, where κ(p) = p and κ2 is the identity.
If G is isomorphic to a subgroup of AGL 1(p), then κ is either the identity or
κ = (p)(1 p− 1)(2 p− 2) · · · (p−1

2
p+1
2 ).

Proof. Because AGL 1(p) is a Frobenius group, 〈ρ〉 is a normal subgroup of
G. Suppose that κ(1) = i. Then, κρκ ∈ 〈ρ〉 and κρκ(p) = i, which means
κρκ = ρi. It implies that for any k = 1, 2, . . . , p,

κ(k + i) = κρi(k) = ρκ(k) = κ(k) + 1.

If i = 1, then κ is the identity. Assume that i 6= 1. Inserting k = i, one can get
κ(2i) = 2. And, taking k = 2i, one obtains κ(3i) = 3. By the same process,
we find κ(ki) = k for any k = 1, 2, . . . , p. So, κ(i2) = i. Since κ(1) = i, i2 ≡ 1
(mod p). Therefore, i = p− 1 and κ = (p)(1 p− 1)(2 p− 2) · · · (p−1

2
p+1
2 ). ¤

For an odd prime p and a p-valent Cayley map M = CM(G,X, q) with the
distribution of inverses κ, κ fixes at least one element in {1, 2, . . . , p}. From
now on, we assume that κ(p) = p without loss of generality.

The next lemma shows that any prime-valent regular Cayley maps on abelian
groups, dihedral groups or dicyclic groups are either balanced or anti-balanced.

Lemma 3.2. For an odd prime p ≥ 3, let M = CM(G,X, q) be a p-valent
regular Cayley map on an abelian group, a dihedral group or a dicyclic group
with the distribution of inverses κ. Then, κ is either the identity or (p)(1 p−
1)(2 p− 2) · · · (p−1

2
p+1
2 ).

Proof. By Proposition 2.1, there exists a group epimorphism f : Mon (M) →
H(κ) such that f(R) = (1 2 · · · p), f(L) = κ and G is isomorphic to
f−1(H(κ)i) for some i = 1, 2, . . . , p. It implies that the group H(κ)i is an
epimorphic image of G. Since G is an abelian group, a dihedral group or a
dicyclic group, the group H(κ)i is either an abelian group, a dihedral group
or a dicyclic group. Moreover, since the group H(κ) generated by (1 2 · · · p)
and κ acts transitively on the set {1, 2, . . . , p}, H(κ) is isomorphic to one of
the groups in Proposition 2.2.

Case 1 : H(κ) is isomorphic to Sp or Ap.
If p = 3 and H(κ) ∼= S3, then κ = (3)(1 2). If p = 3 and H(κ) ∼= A3, then κ

is the identity.
Assume that p > 3 and H(κ) is isomorphic to Sp or Ap. Then, for any

i = 1, 2, . . . , p, the stabilizer H(κ)i is isomorphic to neither an abelian group,
a dihedral group nor a dicyclic group. Thus, it is impossible.
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Case 2 : H(κ) is isomorphic to a subgroup of AGL 1(p).
By Lemma 3.1, κ is either the identity or (p)(1 p− 1)(2 p− 2) · · · (p−1

2
p+1
2 ).

Case 3 : H(κ) is isomorphic to a permutation representation of PSL 2(11) of
degree 11.

Because a permutation representation of PSL 2(11) of degree 11 is a transi-
tive extension of a permutation representation of A5 of degree 10, H(κ)i should
be isomorphic to A5 for any i = 1, 2, . . . , 11, which is isomorphic to neither an
abelian group, a dihedral group nor a dicyclic group.

Case 4 : H(κ) is isomorphic to the Mathiew groups M11 or M23 of degree
11 or 23, respectively.

Since both the Mathiew groups M11 of degree 11 and M23 of 23 act 4-
transitively on 11-set and 23-set, respectively, the stabilizer H(κ)i acts 3-
transitively for any i = 1, 2, . . . , p. Thus, there exist α, β ∈ H(κ)i such that
α = (x y z) · · · and β = (y z w) · · · with x 6= w. Note that the orders
of α and β are multiples of 3. If H(κ)i is isomorphic to a dihedral group or
a dicyclic group, then α and β should commute. But, one can easily check
αβ 6= βα. Hence, H(κ)i can not be isomorphic to an abelian group, a dihedral
group nor a dicyclic group.

Case 5 : H(κ) is isomorphic to a projective group H with PSL d(q1) ≤ H ≤
PΓLd(q1) of degree p = qd

1−1
q1−1 for some prime power q1.

Subcase 5.1 : d > 2. The stabilizer of the point [0, 0, . . . , 0, 1]t in H contains
a subgroup S which is isomorphic to PSL d−1(q1). Except for (d, q1) = (3, 2)
or (3, 3), the group PSL d−1(q1) is simple by Proposition 2.3. For d = 3 and
q1 = 3, the group PSL 2(3) is isomorphic to the alternating group A4. For
d = 3 and q1 = 2, let

A =




1 1 0
1 0 0
1 1 1


 and B =




0 1 0
1 1 0
1 1 1


 .

Then, A and B are in the stabilizer of the point [0, 0, 1]t in PSL 3(2) and the
orders of A and B are 3. Note that two elements of order 3 in a dihedral
group or a dicyclic group commute. On the other hand, one can easily check
AB 6= BA. Hence, for any i = 1, 2, . . . , p, the stabilizer H(κ)i can not be
isomorphic to an abelian group, a dihedral group nor a dicyclic group.

Subcase 5.2 : d = 2 and q1 is an odd prime power. Then, the number
q2
1−1

q1−1 = q1 + 1 can not be prime.

Subcase 5.3 : d = 2 and q1 is 2r for some positive integer r. If q1 = 2, then
|X| = 3. It means that κ is the identity or (3)(1 2). Now, we assume that q1
is 2r for some positive integer r > 1. Then, there exist non-identity elements
x, y ∈ GF (2r) whose orders are odd, where GF (2r) is the Galois field of order
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2r. For these elements x, y ∈ GF (2r), let

C =
[
1 0
0 x

]
and E =

[
1 y
0 x

]
.

Then, C and E are in the stabilizer of the point [1, 0]t in PSL 2(2r) and the
order of C is equal to that of x, hence it is odd. Note that two elements of
odd order in a dihedral group or a dicyclic group should commute. One can
easily check CE 6= EC. Thus, the stabilizer of the point [1, 0]t in PSL 2(2r) is
isomorphic to neither an abelian group, a dihedral group nor a dicyclic group.

Therefore, in all cases, κ is either the identity or

(p)(1 p− 1)(2 p− 2) · · · (p− 1
2

p+ 1
2

). ¤
Note that if the distribution of inverses κ of a Cayley mapM = CM(G,X, q)

is the identity, then M is balanced and all elements (generators) in X are
involutions. On the other hand, if κ is (p)(1 p− 1)(2 p− 2) · · · (p−1

2
p+1
2 ), then

the map M is anti-balanced.

Proof of Theorem 1.1. Let M = CM(G,X, q) be a p-valent regular Cayley
map on an abelian group G with the distribution of inverses κ. Then, by
Lemma 3.2, κ is either the identity or (p)(1 p− 1)(2 p− 2) · · · (p−1

2
p+1
2 ).

Assume that κ is the identity. Then, M is balanced and all elements in X
are involutions. Furthermore, X is an orbit under an automorphism ψ of G and
the restriction of ψ on X is q. Since G is an abelian group and G is generated
by involutions, G is isomorphic to an elementary abelian 2-group Zn

2 for some
positive integer n. Note that the automorphism group of Zn

2 is GL n(2). Hence,
M is isomorphic to CM(Zn

2 , X1, q1) such that
(i) X1 = {Aix | 0 ≤ i ≤ p − 1 } for some A ∈ GL n(2) and x ∈ Zn

2

satisfying that p is the smallest positive integer such that Ap = I and〈
x, Ax, A2x, . . . , Ap−1x

〉
= Zn

2 and
(ii) q1(Aix) = Ai+1x for any i ∈ {0, 1, . . . , p− 1}.

Next, we assume that κ is (p)(1 p − 1)(2 p − 2) · · · (p−1
2

p+1
2 ). Then, M is

anti-balanced. By Proposition 2.5, M is isomorphic to

CM(Z2p, X2 = {1, 3, . . . , 2p− 1}, q2 = (1 3 · · · 2p− 1)). ¤
Next, we proceed to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let M = CM(Dn, X, q) be a p-valent regular Cayley
map on dihedral group with the distribution of inverses κ. Then, by Lemma 3.2,
κ is either the identity or (p)(1 p− 1)(2 p− 2) · · · (p−1

2
p+1
2 ).

Suppose that κ is (p)(1 p − 1)(2 p − 2) · · · (p−1
2

p+1
2 ). Then, M is anti-

balanced. By Theorem 2.6, all regular anti-balanced Cayley maps on dihedral
groups are 4-valent. So, it is impossible. Therefore, κ is the identity and the
map M is balanced. By Theorem 2.8, it completes the proof. ¤
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Corollary 3.3. For any prime p, let Γ = Cay (Dn, X) be a p-valent one-regular
Cayley graph on dihedral group. Then, Γ is normal.

Proof. For the identity element 1 in Dn, the stabilizer Aut (Γ)1 is a cyclic
group of order p and acts regularly on the neighborhood N(1) of 1. Hence,
there is a regular Cayley map M = CM(Dn, X, q) whose underlying graph
is Γ = Cay (Dn, X). By Theorem 1.2, M is balanced. Therefore, the left
translation subgroup D̃n is a normal subgroup of Aut (Γ) = Aut (M). ¤

Proof of Theorem 1.3. Let M = CM(Dic n, X, q) be a p-valent regular Cay-
ley map on a dicyclic group with the distribution of inverses κ. Then, by
Lemma 3.2, M is either balanced or anti-balanced. By Theorem 2.7, there is
no regular anti-balanced Cayley maps on dicyclic groups and every valancy of
regular balanced Cayley maps on dicyclic groups is even. Therefore, there is
no prime-valent regular Cayley map on dicyclic groups. ¤

Remark 1. For any prime p, any p-valent one-regular Cayley graphs Γ =
Cay (Dn, X) on dihedral groups are underlying graphs of regular balanced Cay-
ley maps on dihedral groups by Theorem 1.2 and Corollary 3.3. So, Γ is isomor-
phic to Cay (Dn, X = {b, ab, a`+1b, . . ., a`p−2+`p−3+···+1b}) for some ` such that
0 < ` < n and `p−1+`p−2+ · · ·+1 ≡ 0 (mod n). In [7], it is shown that for any
prime p and for any n, ` satisfying that p is the smallest positive integer such
that `p−1+`p−2+ · · ·+`+1 ≡ 0 (mod n), the Cayley graph Cay (Dn,X = {b,
ab,a`+1b, . . .,a`p−2+`p−3+···+1b}) is one-regular except for finitely many such
pairs n and `. Namely, there exists a constant M which depends on p such
that for any n > M and (n, `, p) ∈ T , the Cayley graph Cay (Dn,X = {b, ab,
a`+1b,. . ., a`k−2+`k−3+···+1b}) is one-regular. In [7], it is also shown that for any
n ≥ 31 and (n, `, 5) ∈ T , the Cayley graph

Cay (Dn, X = {b, ab, a`+1b, a`2+`+1b, a`3+`2+`+1b})
is one-regular.

By Theorems 2.8 and 1.2, for a given positive integer n and for a given
prime p, the number of non-isomorphic p-valent regular Cayley maps on Dn is
the number of positive integer ` satisfying (n, `, p) ∈ T . Note that if `p−1 +
`p−2 + · · · + 1 ≡ 0 (mod n), then (` − 1)(`p−1 + `p−2 + · · · + 1) = `p − 1 ≡ 0
(mod n). So, the numbers n and ` are relatively prime. For any positive integer
n = 2apa1

1 p
a2
2 · · · pat

t (p1, p2, . . . , pt are distinct odd prime numbers, a ≥ 0 and
ai > 0 for each i ≥ 1 ), the multiplicative group Z∗n is isomorphic to the product
of multiplicative groups Z∗2a×Z∗

p
a1
1
×· · ·×Z∗

p
at
t

by Chinese Remainder Theorem.
Moreover, it is well known that Z∗2 = {1}, Z∗4 ∼= Z2, Z∗2a

∼= Z2×Z2a−2 for a ≥ 3
and Z∗

p
ai
i

∼= Z
pai−1

i (pi−1)
for any odd prime pi with ai ≥ 1 [11].

Theorem 3.4. Let p be an odd prime and let n = pa0
0 p

a1
1 p

a2
2 · · · pat

t (p0, p1, p2,
. . . , pt are distinct primes and p0 = p, a0 ≥ 0 and ai > 0 for each i ≥ 1) be a
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positive integer. Then, the number of non-isomorphic p-valent regular Cayley
maps on the dihedral group Dn is (p− 1)t if a0 = 0 or 1 and p|(pi − 1) for all
i = 1, 2, . . . , t; 0 otherwise.

Proof. Let ` be a positive integer such that ` < n and `p−1 + `p−2 + · · ·+1 ≡ 0
(mod n). Then, the numbers n and ` are relatively prime and `p−1+`p−2+· · ·+
1 ≡ 0 (mod pai

i ) for any i = 0, 1, . . . , t. Assume that ` ≡ `i (mod pai

i ) with
0 < `i < pai

i for any i = 0, 1, . . . , t. If `i ≡ 1 (mod pi) for some i = 1, 2, . . . , t,
then

`p−1 + `p−2 + · · ·+ 1 ≡ `p−1
i + `p−2

i + · · ·+ 1 ≡ p 6= 0 (mod pi),

which is a contradiction. Hence, for any i = 1, 2, . . . , t, `i 6= 1 (mod pi). It
implies that the equation `p−1+`p−2+· · ·+1 ≡ 0 (mod pai

i ) is equivalent to the
equation `pi ≡ 1 (mod pai

i ) for i = 1, 2, . . . , t. If there exists an i ∈ {1, 2, . . . , t}
such that p - (pi − 1), then there is no such `i because |Z∗

p
ai
i

| = pai−1
i (pi − 1).

For any pi satisfying p | (pi − 1), there exist p− 1 elements `i such that `i 6= 1
(mod pi) and `pi ≡ 1 (mod pai

i ).
Assume that a0 = 1. Then, for any x ∈ Zp − {1}, xp−1 + xp−2 + · · · + 1 =

xp−1
x−1 ≡ 1 (mod p). Thus, `0 = 1 is the only integer such that 0 < `0 < p and
`p−1
0 + `p−2

0 + · · ·+ 1 ≡ 0 (mod p).
Suppose that a0 ≥ 2. For any x ∈ Zpa0 with x 6= 1 (mod p), xp−1 + xp−2 +

· · · + 1 = xp−1
x−1 ≡ 1 (mod p). Hence, `0 is sp + 1 for some s(0 < s < pa0−1).

Moreover, `0 is s′pa0−1 + 1 for some s′(0 < s′ < p) because `0 should satisfy
`p0 = (sp+ 1)p ≡ 1 (mod pa0). But, for such a number `0,

`p−1
0 + `p−2

0 + · · ·+ 1

≡ ((p− 1)s′pa0−1 + 1) + ((p− 2)s′pa0−1 + 1) + · · ·+ (s′pa0−1 + 1) + 1
≡ p (mod pa0).

Therefore, there exists no such an `0.
Conversely, for any `0, `1, . . . , `t such that 0 < `i < pai

i and `p−1
i + `p−2

i +
· · ·+ 1 ≡ 0 (mod pai

i ) for any i = 0, 1, . . . , d, there exists a unique ` such that
0 < ` < n, ` ≡ `i (mod pai

i ) and `p−1 + `p−2 + · · ·+ 1 ≡ 0 (mod n) by Chinese
Remainder Theorem. Therefore, the number of `’s satisfying 0 < ` < n and
`p−1 + `p−2 + · · ·+ 1 ≡ 0 (mod n) is (p− 1)t if a0 = 0 or 1 and p|(pi − 1) for
all i = 1, 2, . . . , t; 0 otherwise. ¤
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