• Title/Summary/Keyword: Cyclic carbonate

Search Result 63, Processing Time 0.021 seconds

Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications

  • Madzvamuse, Alfred;Hamenu, Louis;Mohammed, Latifatu;Bon, Chris Yeajoon;Kim, Sang Jun;Park, Jeong Ho;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • The electrolyte plays one of the most significant roles in the performance of electrochemical supercapacitors. Most liquid organic electrolytes used commercially have temperature and potential range constraints, which limit the possible energy and power output of the supercapacitor. The effect of elevated temperature on a lithium bis(oxalate)borate(LiBOB) salt-based electrolyte was evaluated in a symmetric supercapacitor assembled with activated carbon electrodes and different electrolyte blends of acetonitrile(ACN) and propylene carbonate(PC). The electrochemical properties were investigated using linear sweep voltammetry, cyclic voltammetry, galvanostatic charge-discharge cycles, and electrochemical impedance spectroscopy. In particular, it was shown that LiBOB is stable at an operational temperature of $80^{\circ}C$, and that, blending the solvents helps to improve the overall performance of the supercapacitor. The cells retained about 81% of the initial specific capacitance after 1000 galvanic cycles in the potential range of 0-2.5 V. Thus, LiBOB/ACN:PC electrolytes exhibit a promising role in supercapacitor applications under elevated temperature conditions.

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors (유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향)

  • Yang, Inchan;Lee, Gihoon;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Synthesis and Evaluation of Stearic Acid Derivatives as Cetane Number Improvers

  • Rode, Ambadas B.;Thajudeen, H.;Chung, Keun-Woo;Kim, Young-Wun;Hong, In-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1965-1969
    • /
    • 2011
  • 1,2,4,5-tetraoxane, mono and dinitrate glycerol carbonate ester derivatives of stearic acid were synthesized along with the known 9(10)-keto methyl sterate, methoxy mono-nitrate and dinitrate of methyl stearate. Their cetane numbers (CNs) were investigated to evaluate their viability for use as CN improvers. The CN performances of tetraoxane and all of the nitrate derivatives were investigated at 500 and 1000 ppm concentrations and compared to that of a traditional CN improver 2-ethylhexyl nitrate (2-EHN). The experimental results suggest that all derivatives evaluated in this study showed better CN improvement than base diesel fuel. Specifically, the 1,2,4,5-tetraoxane derivative of stearic methyl ester was superior to all derivatives studied, also being superior to 2-EHN. We also discussed the correlations between the observed CN trends and thermo-analytical data resulted from thermo gravimetric analysis curves (TGA) and differential scanning calorimetry (DSC).

Lithium Lanthanum Titanate Solid Electrolyte for All-Solid-State Lithium Microbattery (전고상박막전지를 위한 (Li,La)TiO3 고체전해질의 제조와 특성)

  • 안준구;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.930-935
    • /
    • 2004
  • $({Li}_{0.5}0{La}_{0.5}){TiO}_3$ (LLTO) solid electrolyte was grown on LiCo{O}_2 (LCO) cathode films deposited on $Pt/Ti{O}-2/Si{O}_2/Si$ substrate using pulsed laser deposition for all-solid-state lithium microbattery. LLTO solid electrolyte exhibits an amorphous phase at various deposition temperatures. LLTO films deposited at 10$0^{\circ}C$ showed a clear interrace without any chemical reaction with LCO, and showed an initial discharge capacity of 50 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 90 % after 100 cycles with Li anode in 1mol$ LiCl{O}_4$ in propylene carbonate (PC). The increase of capacity retention in LLTO/LCO structure than LCO itself was attributed to the structural stability of LCO cathode films by the stacked LLTO. The cells of LLTO/LCO with LLTO grown at $100^{\circ}C$ showed a good cyclic property of 63.6 % after 300 cycles. An amorphous LLTO solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium microbattery.

용해 납 흐름 배터리용 여러 카본 전극의 에너지 효율 특성 비교

  • Min, Hyeong-Seop;Yang, Min-Gyu;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.59.1-59.1
    • /
    • 2009
  • 레독스 흐름 배터리 (Redox Flow Battery)는 외부의 탱크 등에 저장해 둔 활성물질(이온 가수가 변화는 금속) 의 용액을 펌프로 전해셀에 공급하여 충전 방전하는 배터리로 신재생 에너지인 풍력과 태양광 발전, 야간의 잉여 전력 저장 등 대용량 전력 저장 장치로 관심이 높아지고 있다. 대표적인 레독스 흐름 배터리로 알려진 바나듐 레독스 흐름 배터리는 이온 교환막 사용으로 인하여 전기전도도, 기계적 강도, 투과도 및 전해질 내의 화학적 안정성 등 여러 가지 문제점과 함께 비용 문제점을 야기한다. 하지만 새로운 용해 납 레독스 흐름 배터리는 이온 교환막을 사용하지 않아 바나듐 레독스 흐름 배터리의 문제점 및 시설비가 절약되는 장점이 있어 새로이 연구되지고 있다. 본 연구는 레독스 흐름 배터리에 주로 이용되는 카본 전극재료의 따라 형성되는 Pb, $PbO_2$ 박막의 미세 구조를 및 에너지 효율 특성을 분석하였다. 실험은 half-cell로 이루어졌으며 작업전극은 Carbon felt, Ordered Graphite, Disordered Graphite, Glassy Carbon 등을 여러 카본 재료를 사용하였고, 상대전극은 Pt, 기준전극으로 Ag/AgCl를 사용하여 Cyclic Voltammetry특성과 충방전 특성을 연구하였다. 전해질은 Lead Carbonate ($PbCO_3$)+Methanesulfonic acid ($CH_3SO_3H$) 들어간 수용성 전해질을 교반을 통해 이용하였다. 여러 carbon 전극재료와 생성된 Pb, $PbO_2$ 막의 표면구조, 미세구조, 상들의 변화는 XRD, SEM, EDX, Raman등을 통하여 분석하였으며, 전기화학 공정의 변수와 전극에 따른 에너지 효율특성에 대하여 고찰해 보았다.

  • PDF

Properties of Capacity on Carbon Electrode in EC:MA Electrolytes - I. Effect of Mixing Ratio on the Electrochemical Properties - (EC:MA 혼합전해질에서 카본 전극의 용량 특성 - I. 전기화학적 특성에 대한 혼합비의 영향 -)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Kim, Sung-Phil;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.183-187
    • /
    • 2006
  • The choice of solvents for electrolytes solutions is very important to improve the characteristics of charge/discharge in the Li-ion battery system. Such solvent systems have been widely investigated as electrolytes for Li-ion batteries. In this paper, the electrochemical properties of the solid electrolyte interphase film formed on carbon anode surface and the solvent decomposition voltage in 1 M LiPF6/EC:MA(x:y) electrolyte solutions prepared from the various mixing volume ratios are investigated by chronopotentiometry, cyclic voltammetry, and impedance spectroscopy. As a result, the solvent decomposition voltages are varied with the ionic conductivity of the electrolyte. Electrochemical properties of the passivation film were different, which are dependent on the mixture ratio of the solvents. Therefore, the most appropriate mixing ratio of EC and MA as a solvent in 1 M $LiPF_6/(EC+MA)$ system for Li-ion battery is approximately 1:3 (EC:MA, volume ratio).

Preparation of Solid Polymer Electrolytes by Ultraviolet Radiation and the Electrochemical Properties of Activated Carbon Supercapacitor Adopting Them (자외선 조사에 의한 고체 고분자 전해질의 제조와 이를 채용한 활성탄 수퍼커패시터의 전기화학적 특성)

  • Won, Jung Ha;Kim, Yong Joo;Lee, Young-Gi;Kim, Kwang Man;Kim, Jong Huy;Ko, Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Solid polymer electrolyte films are prepared by ultraviolet radiation in the mixtures of an ionic liquid salt (1-ethyl-3-methylimidazolium tetrafluoroborate, $EMIBF_4$) and solvent (acetonitrile (ACN) or propylene carbonate(PC)), and an oligomer (poly(ethylene glycol)diacrylate, PEGDA, 45-60 wt.%). Electrochemical properties of activated carbon supercapacitors adopting the solid polymer electrolyte films as a separator are also examined by cyclic voltammetry and impedance measurement techniques. As a result, the supercapacitor adopting the PEGDA as much as 45 wt.% exhibits a superior capacitance of $46Fg^{-1}$ at $20mVs^{-1}$. It seems that this is due to fast kinetics of ion conduction by sufficient film flexibility, which can be allowed by comparatively weak ultraviolet curing of small anount of the PEGDA.

Synthesis of Lithium Manganese Oxide by a Sol-Gel Method and Its Electrochemical Behaviors (졸-겔 방법에 의한 LiMn2O4의 합성 및 전기화학적 거동)

  • Jeong, Euh-Duck;Moon, Sung-Wook;Lee, Hak-Myoung;Won, Mi-Sook;Yoon, Jang-Hee;Park, Deog-Su;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2003
  • A precursor of lithium manganese oxide was synthesized by mixing $(CH_3)_2CHOLi\;with\;Mn(CH_3COO)_2{\cdot}4H_2O$ in ethanol using a sol-gel method, then heat-treated at $400^{\circ}C\;and\;800^{\circ}C$ in air atmosphere. The condition of heat treatment was determined by thermogravimetric analysis/differential thermogravimetric analysis (TGA/DTA). The characterization of the lithium manganese oxide was done by X-ray diffraction (XRD) spectra and scanning electron microscopy (SEM). The electrochemical characteristics of lithium manganese oxide electrode for lithium ion battery were measured by cyclic voltammetry (CV), chronoamperometry and AC impedance method using constant charge/discharge process. The electrochemical behaviors of the electrode have been investigated in a 1.0M $LiClO_4/propylene$ carbonate electrolyte solution. The diffusivity of lithium ions, $D^+\;_{Li}\;^+$, as determined by AC impedance technique was $6.2\times10^{-10}cm^2s^{-1}$.

Study of $CO_2$ Absorption Characteristics in Aqueous K_2CO_3$ Solution with Homopiperazine (K_2CO_3$/homopiperazine 수용액의 이산화탄소 흡수 특성 연구)

  • Kim, Young-Eun;Nam, Sung-Chan;Lee, Young-Taek;Yoon, Yeo-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.284-290
    • /
    • 2010
  • In this study, as one of the carbon dioxide ($CO_2$) adsorbents the aqueous potassium carbonate ($K_2CO_3$)/promoter mixtures were investigated. Equilibrium partial pressure ($P_{CO_2}^*$) and pressure change were measured by using VLE (Vapor-liquid equilibrium) equipment in the mixture solution at 60 and $80^{\circ}C$, respectively. Absorption capacity was estimated in the semi-batch absorption apparatus at 40, 60 and $80^{\circ}C$. We proposed to use homopiperazine (homoPZ), cyclic diamine compound as a promoter of $K_2CO_3$ solution, to prevent crystalline formation and increase absorption capacity of aqueous $K_2CO_3$ solution. The absorption capacity of $K_2CO_3$/homoPZ was compared with MEA, $K_2CO_3$ and $K_2CO_3$/piperazine (PZ). Based on the results, we found that the mixture solution containing homoPZ had lower equilibrium partial pressure than that of $K_2CO_3$ solution and the absorption rate was approximately 0.375-times faster at $60^{\circ}C$, 0.343-times faster at $80^{\circ}C$ than that of aqueous $K_2CO_3$ solution without homoPZ. $K_2CO_3$/homoPZ solution showed excellent CO2 loading capacity compared with MEA solution at $60^{\circ}C$.

Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries using Silica-Coated Graphite (실리카로 코팅된 흑연을 이용한 리튬 이차전지용 흑연/실리콘/피치 복합소재의 전기화학적 특성)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.142-149
    • /
    • 2020
  • In this study, the electrochemical performance of Graphite/Silicon/Pitch composites as anode material was investigated to improve the low theoretical capacity of artificial graphite. Spherical artificial graphite surface was coated with polyvinylpyrrolidone (PVP) amphiphiles material to synthesize Graphite/Silica material by silica islands growth. The Graphite/Silicon/Pitch composites were prepared by petroleum pitch coating and magnesiothermic reduction. The Graphite/Silicon/Pitch composite electrodes manufactured using poly(vinylidene fluoride) (PVDF), carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) binders. The coin type half cell was assembled using various electrolytes and additives. The Graphite/Silicon/Pitch composites were analysed by X-ray diffraction (XRD), scanning electron microscope (SEM) and a thermogravimetric analyzer (TGA). The electrochemical characteristics of Graphite/Silicon/Pitch composite were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance spectroscopy. The Graphite/Silicon/Pitch composites showed high cycle stability at a graphite/silica/pitch ratio (1:4:8 wt%). When the electrode is prepared using PAA binder, the high capacity and stability is obtained. The coin type half cell assembled using EC: DMC: EMC electrolyte showed high initial capacity (719 mAh/g) and excellent cycle stability. The rate performance has an capacity retention (77%) at 2 C/0.1 C and an capacity recovery (88%) at 0.1 C / 0.1 C when the vinylene carbonate (VC) was added.