DOI QR코드

DOI QR Code

Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries using Silica-Coated Graphite

실리카로 코팅된 흑연을 이용한 리튬 이차전지용 흑연/실리콘/피치 복합소재의 전기화학적 특성

  • Lee, Su Hyeon (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2019.08.16
  • Accepted : 2019.10.08
  • Published : 2020.02.01

Abstract

In this study, the electrochemical performance of Graphite/Silicon/Pitch composites as anode material was investigated to improve the low theoretical capacity of artificial graphite. Spherical artificial graphite surface was coated with polyvinylpyrrolidone (PVP) amphiphiles material to synthesize Graphite/Silica material by silica islands growth. The Graphite/Silicon/Pitch composites were prepared by petroleum pitch coating and magnesiothermic reduction. The Graphite/Silicon/Pitch composite electrodes manufactured using poly(vinylidene fluoride) (PVDF), carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) binders. The coin type half cell was assembled using various electrolytes and additives. The Graphite/Silicon/Pitch composites were analysed by X-ray diffraction (XRD), scanning electron microscope (SEM) and a thermogravimetric analyzer (TGA). The electrochemical characteristics of Graphite/Silicon/Pitch composite were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance spectroscopy. The Graphite/Silicon/Pitch composites showed high cycle stability at a graphite/silica/pitch ratio (1:4:8 wt%). When the electrode is prepared using PAA binder, the high capacity and stability is obtained. The coin type half cell assembled using EC: DMC: EMC electrolyte showed high initial capacity (719 mAh/g) and excellent cycle stability. The rate performance has an capacity retention (77%) at 2 C/0.1 C and an capacity recovery (88%) at 0.1 C / 0.1 C when the vinylene carbonate (VC) was added.

본 연구에서는 인조흑연의 낮은 이론용량을 개선하기 위하여 음극소재로서 흑연/실리콘/피치 복합소재의 전기화학적 성능을 조사하였다. 구형의 인조 흑연 표면을 polyvinylpyrrolidone (PVP) 양친성 물질로 코팅한 후 실리카를 성장시켜 흑연/실리카 소재를 합성하였으며, 석유계 피치 코팅과 마그네슘 열 환원법을 통해 흑연/실리콘/피치 복합소재를 제조하였다. 흑연/실리콘/피치 복합소재의 전극은 poly(vinylidene fluoride) (PVDF), carboxymethyl cellulose (CMC), polyacrylic acid (PAA) 바인더에 따라 제조하였으며, 다양한 전해액과 첨가제를 이용하여 전지를 조립하였다. 흑연/실리콘/피치 복합소재는 X-ray diffraction (XRD), scanning electron microscope (SEM)와 thermogravimetric analyzer (TGA)를 통해 물리적 특성을 분석하였으며, 전기화학적 특성은 충 방전 사이클, 율속, 순환전압전류, 임피던스 테스트를 통해 조사하였다. 흑연/실리콘/피치 복합소재는 흑연 : 실리카 : 피치 = 1 : 4 : 8일 때 높은 사이클 안정성을 보였다. PAA 바인더를 사용하여 제조된 전극은 높은 용량과 안정성을 보였으며, EC:DMC:EMC 전해액을 사용하였을 때 719 mAh/g의 높은 초기 용량과 우수한 사이클 안정성 나타내었다. 또한 vinylene carbonate (VC) 첨가시에 2 C/0.1 C 일 때 77% 용량 유지율과 0.1 C/0.1 C 일 때 88% 용량 회복을 나타냄을 확인하였다.

Keywords

References

  1. Ko, H. S., Park, H. W. and Lee, J. D., "The Effect of Calcination Temperature on the Layered $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$ for Lithiumion Battery," Korean Chem. Eng. Res., 56(5), 718-724(2018). https://doi.org/10.9713/kcer.2018.56.5.718
  2. Jo, Y. J. and Lee, J. D., "Electrochemical Performance of Graphite/ Silicon/Carbon Composites as Anode Materials for Lithiumion Batteries," Korean Chem. Eng. Res., 56(3), 320-326(2018). https://doi.org/10.9713/KCER.2018.56.3.320
  3. Long, W., Fang, B., Ignaszak, A., Wu, Z., Wang, Y. J. and Wilkinson, D., "Biomass-derived Nanostructured Carbons and their Composites as Anode Materials for Lithium Ion Batteries," Chem. Soc. Rev., 46, 7176-7190(2017). https://doi.org/10.1039/C6CS00639F
  4. Bao, Q., Huang, Y. H., Lan, C. K., Chen, B. H. and Duh, J. G., "Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes," Electrochim. Acta, 173, 82-90(2015). https://doi.org/10.1016/j.electacta.2015.04.155
  5. Lee, J. and Moon, J. H., "Spherical Graphene and Si Nanoparticle Composite Particles for High-Performance Lithium Batteries," Korean J. Chem. Eng., 34(12), 3195-3199(2017). https://doi.org/10.1007/s11814-017-0226-7
  6. Wachtler, M., Besenhard, J. O. and Winter, M., "Tin and Tin-Based Intermetallics as New Anode Materials for Lithium-Ion Cells," J. Power Sources, 94, 189-193(2001). https://doi.org/10.1016/S0378-7753(00)00585-1
  7. Wu, H., Chan, G., Choi, J. W., Ryu, L., Yao, Y., McDowell, M. T., Lee, S. W., Jackson, A., Yang, Y., Hu, L. and Cui, Y., "Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid-Lectrolyte Interphase Control," Nat. Nanotechnol., 7(5), 310-315(2012). https://doi.org/10.1038/nnano.2012.35
  8. Antitomaso, P., Fraisse, B., Stievano, L., Biscaglia, S., Perrot, D. A., Girard, P., Sougrati, M. T. and Monconduit, L., "SnSb Electrodes for Li-Ion Batteries: The Electrochemical Mechanism and Capacity Fading Origins Elucidated by Using Operando Techniques," J. Mater. Chem. A, 5, 6546-6555(2017). https://doi.org/10.1039/C6TA10138K
  9. Sohn, M., Kim, D. S., Park, H. I., Kim, J. H. and Kim, H., "Porous Silicon-Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes," Electrochim. Acta, 196, 197-205(2016). https://doi.org/10.1016/j.electacta.2016.02.101
  10. Huanga, L., Wei, H. B., Ke, F. S., Fan, X. Y., Li, J. T. and Sun, S. G., "Electrodeposition and Lithium Storage Performance of Three-Dimensional Porous Reticular Sn-Ni Alloy Electrodes," Electrochim. Acta, 54, 2693-2698(2009). https://doi.org/10.1016/j.electacta.2008.11.044
  11. Kim, H., Seo, M., Park, M. H. and Cho, J., "A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries," Angew. Chem. Int. Ed., 49, 2146-2149(2010). https://doi.org/10.1002/anie.200906287
  12. Lee, S. H. and Lee, J. D., "Electrochemical Performance of Graphite/ Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group," Korean Chem. Eng. Res., 57(1), 118-123(2019).
  13. Jeena, M. T., Bok, T., Kim, S. H., Park, S., Kim, J. Y., Park, S. and Ryu, J. H., "A Siloxane-Incorporated Copolymer as an In Situ Cross-Linkable Binder for High Performance Silicon Anodes in Li-Ion Batteries," Nanoscale, 8, 9245-9253(2016). https://doi.org/10.1039/C6NR01559J
  14. Wang, W. and Yang, S., "Enhanced Overall Electrochemical Performance of Silicon/Carbon Anode for Lithium-Ion Batteries Using Fluoroethylene Carbonate as an Electrolyte Additive," J. Alloys Compd, 695, 3249-3255(2017). https://doi.org/10.1016/j.jallcom.2016.11.248
  15. Cai, Y., Allan, S. M. and Sandhage, K. H., "Three-Dimensional Magnesia-Based Nanocrystal Assemblies Via Low-Temperature Magnesiothermic Reaction of Diatom Microshells," J. Am. Ceram. Soc., 88(7), 2005-2010(2005). https://doi.org/10.1111/j.1551-2916.2005.00388.x
  16. Choi, S., Kim, K., Nam, J. and Shim, S. E., "Synthesis of Silica-Coated Graphite by Enolization of Polyvinylpyrrolidone and its Thermal and Electrical Conductivity in Polymer Composites," CARBON, 60, 254-265(2013). https://doi.org/10.1016/j.carbon.2013.04.034
  17. Lee, H. Y. and Lee, J. D., "Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica," Korean Chem. Eng. Res., 54(4), 459-464(2016). https://doi.org/10.9713/kcer.2016.54.4.459
  18. Yang, Y., Wang, Z., Zhou, Y., Guo, H. and Li, X., "Synthesis of Porous Si/graphite/carbon Nanotubes@C Composites as a Practical Highcapacity Anode for Lithium-ion Batteries," Mater. Lett., 199, 84-87(2017). https://doi.org/10.1016/j.matlet.2017.04.057
  19. Komaba, K., Yabuuchi, N., Ozeki, T., Han, Z. J., Shimomura, K., Yui, H., Katayama, Y. and Miura, T., "Comparative Study of Sodium Polyacrylate and Poly-(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries," J. Phys. Chem, 116, 1380-1389(2012).
  20. Komaba, S., Shimomura, K., Yabuuchi, N., Ozeki, T., Yui, H. and Konno, K., "Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries," J. Phys. Chem, 115, 13487-13495(2011).
  21. Chen, L., Wang, K., Xie, X. and Xie, J., "Effect of Vinylene Carbonate (VC) as Electrolyte Additive on Electrochemical Performance of Si Film Anode for Lithium Ion Batteries," J. Power Sources, 174, 538-543(2007). https://doi.org/10.1016/j.jpowsour.2007.06.149
  22. Jaumann, T., Balach, J., Langklotz, U., Sauchuk, V., Fritsch, M., Michaelis, A., Teltevskiij, V., Mikhailova, D., Oswald, S., Klose, M., Stephani, G., Hauser, R., Eckert, J. and Giebeler, L., "Lifetime vs. Rate Capability: Understanding the Role of FEC and VC in High-Energy Li-Ion Batteries with Nano-Silicon Anodes," Energy Storage Materials, 6, 26-35(2017). https://doi.org/10.1016/j.ensm.2016.08.002