• Title/Summary/Keyword: Cyber Target

Search Result 162, Processing Time 0.03 seconds

A Study on Priority Analysis of Evaluation Factors for Cyber Threats using Open Source Intelligence (OSINT) (공개출처정보를 활용한 사이버위협 평가요소의 중요도 분석 연구)

  • Kang, Sungrok;Moon, Minam;Shin, Kyuyong;Lee, Jongkwan
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • It is no exaggeration to say that we live with cyber threats every day. Nevertheless, it is difficult for us to obtain objective information about cyber threats and attacks because it is difficult to clearly identify the attacker, the purpose of attack, and the range of damage, and rely on information from a single source. In the preceding research of this study, we proposed the new approach for establishing Database (DB) for cyber attacks using Open Source Intelligence(OSINT). In this research, we present the evaluation factors for cyber threats among cyber attack DB and analyze the priority of those factors in oder to quantify cyber threats. We select the purpose of attack, attack category, target, ease of attack, attack persistence, frequency of OSINT DB, and factors of the lower layer for each factor as the evaluation factors for cyber threats. After selection, the priority of each factor is analyzed using the Analytic Hierarchy Process(AHP).

Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma

  • Paik, Eun Kyung;Kim, Mi-Sook;Choi, Chul Won;Jang, Won Il;Lee, Sung Hyun;Choi, Sang Hyoun;Kim, Kum Bae;Lee, Dong Han
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.233-241
    • /
    • 2015
  • Purpose: To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. Materials and Methods: Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. Results: The conformity index was $1.05{\pm}0.02$ for the CyberKnife plan, and $1.13{\pm}0.10$ for the RapidArc plan. The homogeneity index was $1.23{\pm}0.01$ for the CyberKnife plan, and $1.10{\pm}0.03$ for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of $V_1$ and $V_3$. The normalized volumes of $V_{60}$ for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. Conclusion: CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body.

Integrated Scenario Authoring Method using Mission Impact Analysis Tool due to Cyber Attacks (사이버공격에 의한 임무영향 분석 도구를 이용한 통합시나리오 저작 방법)

  • Yonghyun Kim;Donghwa Kim;Donghwan Lee;Juyoub Kim;Myung Kil Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.107-117
    • /
    • 2023
  • It must be possible to assess how combat actions taking place in cyberspace affect the military's major mission systems and weapon systems. In order to analyze the mission impact caused by a cyber attack through cyber M&S, the target mission system and cyber warfare elements must be built as a model and a scenario for simulation must be authored. Many studies related to mission impact analysis due to cyber warfare have been conducted focusing on the United States, and existing studies have authored separate scenarios for physical battlefields and cyber battlefields. It is necessary to build a simulation environment that combines a physical battlefield model and a cyber battlefield model, and be able to integrate and author mission scenarios and cyber attack/defense scenarios. In addition, the physical battlefield and cyber battlefield are different work areas, so authoring two types of scenarios for simulation is very complicated and time-consuming. In this paper, we propose a method of using mission system information to prepare the data needed for scenario authoring in advance and using the pre-worked data to author an integrated scenario. The proposed method is being developed by reflecting it in the design of the scenario authoring tool, and an integrated scenario authoring in the field of counter-fire warfare is being performed to prove the proposed method. In the future, by using a scenario authoring tool that reflects the proposed method, it will be possible to easily author an integrated scenario for mission impact analysis in a short period of time.

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

Target Object Search Algorithm for Behavior-based Robot Using Direction Refinement (방향 보정올 통한 행동기반 로봇의 목표 탐색)

  • Min, Byeong-Jun;Sung, Joong-Gon;Won, Il-Young
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.439-442
    • /
    • 2016
  • 제한된 환경에서 로봇이 동적 장애물들에 대해 능동적으로 대처하며 목표한 지점까지 도달하기 위한 알고리즘을 제안한다. 로봇은 행동기반 시스템으로 만들어져 주변 장애물들을 자율적으로 회피한다. ex-agent는 공중에서 주변 환경들을 modeling 한 뒤 cell-map을 만들어 $A^*$알고리즘을 통해 이동 경로를 설정한다. 이동 경로와 로봇의 진행방향을 비교하여 회전 방향을 조언해준다. 로봇은 ex-agent 로부터 받은 조언과 센서값들을 조율하여 장애물들을 능동적으로 회피하며 목표 위치를 찾아갈 수 있다. 실험은 시뮬레이터를 통해 이루어졌으며 장애물들에 대해 원반한 회피율을 보였다.

Target Object Search Algorithm for Mobile Robot Using Wireless AP in Dynamic Environment (동적환경에서 무선 AP를 이용한 모바일 로봇의 목표 탐색 알고리즘)

  • Jo, Jung-woo;Bae, Gi-min;Weon, Ill-Young
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.775-778
    • /
    • 2016
  • 로봇 주행 기술은 전통적인 로봇요소 기술 외에도 여러 기술로 대상 응용서비스에 따라 IT 기술과 적극적인 융합을 통해 다양한 주행방법과 주행성능이 향상되고 있다. 본 논문에서는 대표적인 실내 모바일 로봇인 로봇 청소기를 대상으로 기존의 방법인 적외선과 카메라 방법이 아닌 보통 가정에도 쉽게 존재하는 AP를 이용해 목표를 설정하여 포섭구조 이론을 기반으로 동적인 환경에서도 충전 스테이션 까지 자율 주행이 가능한 로봇 알고리즘을 설계하였다. 그 결과 동적인 환경을 설정하여 로봇이 AP를 찾아가는 것을 확인하였고 주행 경로와 경과 시간을 표로 도출하여 다른 경우를 예측할 수 있게 하였다. 향후 행동 기반 로봇과 다양한 센서를 이용하여 로봇의 위치와 목표점 사이의 최단거리 경로를 구하여 주행하는 것이 목표이다.

Design of Security Vulnerability Analysis Target Monitoring Function for Effective Fuzzing Test in VxWorks Environment (VxWorks 환경에서 효과적인 퍼징 테스트를 위한 보안취약점 분석대상 모니터링 기능 설계)

  • An, Gae-Il;Song, Won-Jun;Choi, Yang-Seo
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.407-408
    • /
    • 2019
  • 산업제어시스템에서 사용되는 소프트웨어의 보안취약점을 테스트하기 위한 방법으로 퍼징(Fuzzing)이 사용되고 있다. 퍼징 시스템은 크게 퍼징 대상을 테스트하는 퍼저(fuzzer)와 퍼징 대상을 모니터링하는 모니터링 모듈로 구성된다. 본 논문에서는 VxWorks 환경에서 효과적인 퍼징을 제공하기 위해 요구되는 퍼징 대상 모니터링 기능을 정의하고 모니터링 모듈을 설계한다.

Advanced insider threat detection model to apply periodic work atmosphere

  • Oh, Junhyoung;Kim, Tae Ho;Lee, Kyung Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1722-1737
    • /
    • 2019
  • We developed an insider threat detection model to be used by organizations that repeat tasks at regular intervals. The model identifies the best combination of different feature selection algorithms, unsupervised learning algorithms, and standard scores. We derive a model specifically optimized for the organization by evaluating each combination in terms of accuracy, AUC (Area Under the Curve), and TPR (True Positive Rate). In order to validate this model, a four-year log was applied to the system handling sensitive information from public institutions. In the research target system, the user log was analyzed monthly based on the fact that the business process is processed at a cycle of one year, and the roles are determined for each person in charge. In order to classify the behavior of a user as abnormal, the standard scores of each organization were calculated and classified as abnormal when they exceeded certain thresholds. Using this method, we proposed an optimized model for the organization and verified it.

Attack Surface Expansion through Decoy Trap for Protected Servers in Moving Target Defense

  • Park, Tae-Keun;Park, Kyung-Min;Moon, Dae-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.25-32
    • /
    • 2019
  • In this paper, we propose a method to apply the attack surface expansion through decoy traps to a protected server network. The network consists of a large number of decoys and protected servers. In the network, each protected server dynamically mutates its IP address and port numbers based on Hidden Tunnel Networking that is a network-based moving target defense scheme. The moving target defense is a new approach to cyber security and continuously changes system's attack surface to prevent attacks. And, the attack surface expansion is an approach that uses decoys and decoy groups to protect attacks. The proposed method modifies the NAT table of the protected server with a custom chain and a RETURN target in order to make attackers waste all their time and effort in the decoy traps. We theoretically analyze the attacker success rate for the protected server network before and after applying the proposed method. The proposed method is expected to significantly reduce the probability that a protected server will be identified and compromised by attackers.

Development of Hardware In the Loop System for Cyber Security Training in Nuclear Power Plants (원자력발전소 사이버보안 훈련을 위한 HIL(Hardware In the Loop) System 개발)

  • Song, Jae-gu;Lee, Jung-woon;Lee, Cheol-kwon;Lee, Chan-young;Shin, Jin-soo;Hwang, In-koo;Choi, Jong-gyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.867-875
    • /
    • 2019
  • Security awareness and training are becoming more important as cyber security incidents tend to increase in industrial control systems, including nuclear power plants. For effective cyber security awareness and training for the personnel who manage and operate the target facility, a TEST-BED is required that can analyze the impact of cyber attacks from the sensor level to the operation status of the nuclear power plant. In this paper, we have developed an HIL system for nuclear power plant cyber security training. It includes nuclear power plant status simulations and specific system status simulation together with physical devices. This research result will be used for the specialized cyber security training program for Korean nuclear facilities.