• Title/Summary/Keyword: Cutting disc

Search Result 54, Processing Time 0.023 seconds

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

DEVELOPMENT OF MUSHROOM SPAWN BOTTLE CUTTER-SPAWM CAKE SHREDDER

  • Choe, Kwang-Jae;Chang, Yu-Seob;Yun, Jin-Ha
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1031-1040
    • /
    • 1996
  • Spawn bottle cutting and spawn cake shredding machine has been developed to save the farm labor and operating cost for mushroom growing farmers. The prototype can cut the bottom and side of the bottle while shredding the spawn cake by one farmer. The cutting plastic shell is done by two couples of high speed disc saws that can cut cross section and lengthwise two side of the bottle, while spawn cake shredding is done by spike teethed rotating drum and wiremesh concave. The optimum speed of cutting disc saw was observed 1.700rpm both the cross cutting saw and lengthwise cutting saw in consideration of the cutting accuracy. And the location for the instalation of cross cutting disc saw was considered as around 4 mm above the table bottom , while the optimum clearance between two edges of lengthwise cutting disc saw was showed 86mm. For the sawdust spawn cake shredder , proper size of spawn sawdust granule was observed in the 15 x 15mm size withmesh concave with the shredding rum speed of 500rpm. The prototype can be reduce 73 per cent of working hours with the working cost reduction of 49 per cent compare with those of conventional operation.

  • PDF

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

Numerical study on rock fragmentation by TBM disc cutter (TBM 디스크 커터의 암석절삭에 관한 수치해석적 연구)

  • Cho, Jung-Woo;Yu, Sang-Hwa;Jeon, Seok-Won;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.139-152
    • /
    • 2008
  • A series of numerical experiments were carried out to simulate the rock cutting behavior by TBM disc cutter in a given took condition. AUTODYN-3D, a commercial program capable of simulating three-dimensional dynamic failure, was utilized to carry out the numerical tests over four different disc cutter spacing conditions. After modelling three-dimensional geometries of disc cutter and rock specimen, the linear cutting tests by a disc cutter were simulated for eight different types of rocks. The numerical result, that is the optimum cutter spacing for isotropic rocks had the good agreements with those from linear cutting test. However, for relatively anisotropic or jointed rocks, the specific energy obtained from the numerical tests was almost two-times bigger than the real linear cutting results. Therefore, to simulate cutting procedures for anisotropic rocks realistically, further studies would be necessary.

  • PDF

Characterization of the deformation of a disc cutter in linear rock cutting test (암석의 선형절삭실험에 의한 디스크커터의 변형특성 평가)

  • Chang, Soo-Ho;Choi, Soon-Wook;Park, Young-Taek;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.197-213
    • /
    • 2012
  • Disc cutter is a key cutting tool for rock excavation by TBMs. This study aimed to characterize the deformation of a cutter ring by strain measurement as well as infrared thermal camera measurement during a series of linear cutting tests for a hard rock. The strain measurement results indicated that the cutter ring clearly showed a linear elastic behavior. The data obtained from the infrared thermal camera measurement demonstrated that the maximum temperature increase in the cutter ring was below $14.4^{\circ}C$. The deformation and temperature increase of the cutter ring during rock cutting were insignificant in a given cutting test condition of this study.

Comparative analysis of cutter acting forces and axial stresses of single and double disc cutters by linear cutting tests (선형절삭시험에 의한 더블디스크커터와 싱글디스크커터의 커터 작용력과 축응력에 대한 실험적 평가)

  • Choi, Soon-Wook;Chang, Soo-Ho;Park, Young-Taek;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.181-191
    • /
    • 2014
  • This study aims to evaluate cutter acting forces as well as axial stresses and torques in the shaft of two kinds of disc cutters including a single disc cutter and a double disc cutter with the same cutter ring geometry in a series of linear cutting tests. From the tests, the mean values of normal forces and rolling forces acting on the double disc cutter were approximately twice as high as those from the single disc cutter. Similarly, the mean values of axial stresses in the shaft of the double disc cutter were also twice as high as those from the single disc cutter even though the comparisons of torques from two kinds of disc cutters were insignificant since they showed very low values. However, it is necessary to take the durability of a tapered roller bearing used for the double disc cutter into high consideration since the average normal force from the double disc cutter exceeds the allowable force for a disc cutter with the diameter of 432 mm (17 inches). Finally, there is no practical problem in terms of axial stresses in the shaft of the double disc cutter since they are much lower than the yielding stress of the cutter shaft material, even though the axial stresses in the shaft of the double disc cutter are approximately twice as high as those from the single disc cutter.

Assessment of rock cutting efficiency of an actuated undercutting disc (구동형 언더커팅 디스크의 절삭효율 평가)

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2021
  • Alternative methods of rock cutting have been introduced to substitute and to improve the traditional mechanical rock excavation methods (e.g., TBM and roadheader). Undercutting methods have been recently studied in some countries. In undercutting, several additional cutting parameters are involved in its cutting process compared to the traditional rock-cutting. As a fundamental study, this paper introduces the concept of undercutting method with actuated disc, lab-scaled testing system, and testing procedures of undercutting by the system. Also, we present the calculation methods of cutter forces and specific energy, and discuss the results of undercutting tests compared to those of traditional rock-cutting methods.

Research Trend of Real-Time Measurement for Acting Force of TBM Disc Cutter (TBM 디스크커터의 실시간 하중 계측을 위한 연구현황)

  • Gyeongmin Ki;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.244-254
    • /
    • 2023
  • The disc cutter mounted on the Tunnel Boring Machine (TBM) is subjected to cutting forces in three dimensions during rock excavation process. It is widely known that the cutting forces increased with the strength of the rock mass, while the rolling force can be significantly increased when the disc cutter encounters abnormal rotation. Therefore, the cutting force acts on the disc cutter provides important information because it represents the conditions of the rock mass and the disc cutter. For these reasons, several studies have been conducted to measure the cutter forces in real-time. This paper introduces the current status of research on the cutter force measurement of TBM disc cutters, which has been reported in the literature. It is judged that this paper can be a useful reference material when similar technologies are developed in Korea in the future.

A numerical study on rock cutting by a TBM disc cutter using SPH code (SPH 코드를 사용한 TBM 디스크커터의 암석 절삭에 대한 수치해석적 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.345-356
    • /
    • 2013
  • Numerical simulation on rock cutting by a TBM disc cutter was carried out using SPH (Smoothed Particle Hydrodynamics) code. AUTODYN3D, a commercial software program based on finite element method, was used in this study. The three-dimensional geometry of a disc cutter and a rock specimen were modeled by Lagrange and SPH code respectively. The numerical simulation was carried out for Hwangdeung granite for 10 different cutting conditions. The results of the numerical simulation, i.e. the relation between cutter force and failure behavior, had a good agreement with those from LCM test. The cutter forces measured in the numerical simulation had 10% deviation from the LCM test results. Moreover, the optimum cutter spacing was almost identical with the experimental results. These results indicate that SPH code can be successfully used had applicability for simulation on rock cutting by a TBM disc cutter. However, further study on Lagrange-SPH coupled modelling would be necessary to reduce the computation time.

Experimental evaluation of the effects of cutting ring shape on cutter acting forces in a hard rock (커터 링의 형상에 따른 디스크커터 작용력의 실험적 평가)

  • Chang, Soo-Ho;Choi, Soon-Wook;Park, Young-Taek;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.225-235
    • /
    • 2013
  • Cutter forces acting on a disc cutter in TBM are the key parameters for TBM design and its performance prediction. This study aimed to experimentally evaluate cutter forces with different ring shapes in a hard rock. The stiffness of a cutter ring was indirectly estimated from a series of full-scale linear cutting tests. From the experiments, it was verified that the rolling stress acting on a V-shape disc cutter was much higher than on a CCS disc cutter even though the penetration depth by a V-shape disc cutter could be increased in the same cutting condition. Finally, it is suggested that a prediction model considering the shape parameters of a disc cutter should be used for its better prediction.