DOI QR코드

DOI QR Code

Assessment of rock cutting efficiency of an actuated undercutting disc

구동형 언더커팅 디스크의 절삭효율 평가

  • Jeong, Hoyoung (Dept. of Energy Resources Engineering, Pukyong National University) ;
  • Wicaksana, Yudhidya (Dept. of Energy Resources Engineering, Seoul National University) ;
  • Kim, Sehun (Dept. of Energy Resources Engineering, Seoul National University) ;
  • Jeon, Seokwon (Dept. of Energy Resources Engineering, Seoul National University)
  • 정호영 (부경대학교 에너지자원공학과) ;
  • ;
  • 김세훈 (서울대학교 에너지자원공학과) ;
  • 전석원 (서울대학교 에너지자원공학과)
  • Received : 2021.04.24
  • Accepted : 2021.05.20
  • Published : 2021.05.31

Abstract

Alternative methods of rock cutting have been introduced to substitute and to improve the traditional mechanical rock excavation methods (e.g., TBM and roadheader). Undercutting methods have been recently studied in some countries. In undercutting, several additional cutting parameters are involved in its cutting process compared to the traditional rock-cutting. As a fundamental study, this paper introduces the concept of undercutting method with actuated disc, lab-scaled testing system, and testing procedures of undercutting by the system. Also, we present the calculation methods of cutter forces and specific energy, and discuss the results of undercutting tests compared to those of traditional rock-cutting methods.

TBM과 로드헤더로 대표되는 기존의 기계화 암반굴착방식을 보완하고 대체하기 위한 새로운 개념의 암석절삭기법들이 연구되어오고 있다. 이러한 기법들 중 언더커팅 방식은 최근에 연구가 수행되고 있는 방식이다. 언더커팅에서는 기존의 전통적인 암석절삭 방식과 비교하여 보다 많은 절삭변수들이 암석의 절삭메커니즘에 관여한다. 본 논문은 이에 대한 기초연구로 수행되었으며, 언더커팅이 적용된 구동형 디스크, 실험실 스케일의 절삭시험시스템, 시험 방법에 대하여 소개하였다. 또한 본 논문에서 소개된 절삭시험시스템을 이용하여 구동형 언더커팅 디스크의 절삭력을 통해 비에너지를 계산하는 방법을 소개하였으며, 그 결과를 전통적인 암석절삭방식과 비교하여 분석하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 국토교통과학기술진흥원의 국토교통기술촉진사업(과제번호: 20CTAP-C152888-02)의 지원으로 수행되었습니다. 연구 환경을 지원해 주신 서울대학교 공학연구원과 부경대학교(과제번호: C-D-2021-0972)에 감사드립니다.

References

  1. Copur, H., Bilgin, N., Balci, C., Tumac, D., Avunduk, E. (2017), "Effects of different cutting patterns and experimental conditions on the performance of a conical drag tool", Rock Mechanics and Rock Engineering, Vol. 50, No. 6, pp. 1585-1609. https://doi.org/10.1007/s00603-017-1172-8
  2. Dehkhoda, S., Detournay, E. (2017), "Mechanics of actuated disc cutting", Rock Mechanics and Rock Engineering, Vol. 50, No. 2, pp. 465-483. https://doi.org/10.1007/s00603-016-1121-y
  3. Dehkhoda, S., Detournay, E. (2019), "Rock cutting experiments with an actuated disc", Rock Mechanics and Rock Engineering, Vol. 52, No. 9, pp. 3443-3458. https://doi.org/10.1007/s00603-019-01767-y
  4. Dehkhoda, S., Hill, B. (2019), "Clearance angle and evolution of depth of cut in actuated disc cutting", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 11, No. 3, pp. 644-658. https://doi.org/10.1016/j.jrmge.2018.12.010
  5. Jeong, H., Choi, S., Jeon, S. (2019), "Current status of rock cutting technique using undercutting concept", Tunnel and Underground Space, Vol. 29, No. 3, pp. 148-156. https://doi.org/10.7474/TUS.2019.29.3.148
  6. Jeong, H., Jeon, S. (2018), "Characteristic of size distribution of rock chip produced by rock cutting with a pick cutter", Geomechanics and Engineering, Vol. 15, No. 3, pp. 811-822. https://doi.org/10.12989/GAE.2018.15.3.811
  7. Jeong, H., Wicaksana, Y., Kim, S., Jeon, S. (2020), "Fundamental study on rock cutting by an actuated undercutting disc", Tunnel and Underground Space, Vol. 30, No. 6, pp. 591-602. https://doi.org/10.7474/TUS.2020.30.6.591
  8. Kovalyshen, Y. (2015), "Analytical model of oscillatory disc cutting", International Journal of Rock Mechanics and Mining Sciences, Vol. 77, pp. 378-383. https://doi.org/10.1016/j.ijrmms.2015.04.015