• Title/Summary/Keyword: Cutting Edge

Search Result 754, Processing Time 0.026 seconds

Measurement of cutting edge ratio using vision system in grinding (연삭에서 비젼시스템을 이용한 절삭날 면적률의 측정)

  • Yu, Eun-Lee;Sa, Seung-Yun;Ryu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1531-1540
    • /
    • 1997
  • Mordern industrial society pursues unmanned system and automation of manufacturing process. Abreast with this tendensy, production of goods which requires advanced accuracy is increasing as well. According to this, the work sensing time of dressing by monitoring and diagnosing the condition of grinding, which is th representative way in accurate manufacturing, is an important work to prevent serious damages which affect grinding process or products by wearing grinding wheel. Computer vision system was composed, so that grinding wheel surface was acquired by CCD camera and the change of cutting edge ratio was measured. Then we used automatic thresholding technique from histogram as a way of dividing grinding cutting edge from grinding surface. As a result, we are trying to approach unmanned system and automation by deciding more accurate time of dressing and by visualizing behavior of grinding wheel by making use of computer vision.

Recovery Process of Forest Edge Formed by Clear-cutting Harvest in Korean Red Pine (Pinus densiflora) Forest in Gangwondo, South Korea (강원도 남부 지역에서 소나무림 벌채 후 형성된 숲 가장자리의 회복 과정)

  • Kim, Jun-Soo;Cho, Yong-Chan;Bae, Kwan-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Forest harvest as large scale artificial disturbance makes edge environment in both clear-cutted and forested habitat. To clarify the development and recovery process of forest edge after disturbances is essential to understand vegetation responses and landscape level consequences such as edge-distance. In Korea, after clear-cutting, edge-related changes of environment and vegetation was not clarified yet. In Korean red pine (Pinus densiflora) forest, by applying space-for-time approach (sites with undisturbed and 1, 3, 10, 16 yr after cutting), the edge-related change of plant abundance and abiotic factors were determined for 20 line-transect (60 m) and 340 ($1m{\times}5m$) quadrats, and clarified depth and duration of the disturbance. Immediately after edge formation, within 15m form the edge, biotic and abiotic factors such as cover, richness, canopy openness, temperature and moisture content exhibited larger changes compared to forest interior. Plant abundance and abiotic variables were stabilized at the level of forest inside within 16 yr and 10 yr after edge creation, respectively. Woody (tree and shrub) species generally was showed larger increment with proximity to edge than did herb or graminoid species. In addition, negative interactions between woody and herbaceous species were detected during the period of forest edge closure. Our results suggested that depth of forest edge formed by clear-cutting of Korean red pine forest was at least from 15 m to 20 m and edge effect were likely sustained more than 16 years. As the first empirical study on edge-distance between two contrast habitats of clear-cutted and adjacent forest in South Korea, the analytical reality on landscape structure and habitat patches can be improved.

Fabrication of Micro/nanoscale Cutting Tool Geometry of Single Crystal Diamond Tool by Focused Ion Beam (집속이온빔(Focused Ion Beam)에 의한 단결정 다이아몬드 공구의 마이크로/나노스케일 절삭공구 형상 제작)

  • Baek, Seung Yub;Jang, Sung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • A study was carried out to fabricate the cutting tool geometry with micro/nanoscale on the single crystal diamond tool by using the FIB. The FIB technique is an ideal tool for TEM sample preparation that allows for the fabrication of electron-transparent foils. The FIB is appropriate techniques to sample and subsequently define the chemical composition and the structural state of mineral inclusion on the micro/nanoscale. The combination of FIB with a SEM allows for 3D information to be obtained from samples including 3D imaging. Cutting strategies were demonstrated to improve the performance of cutting tool geometry and to generate high aspect ratio micro cutting tool. A finely focused beam of 30keV Ga+ ions was used to mill cutting tool shapes for various micro patterns. Therefore FIB sputtering is used to shape a variety of cutting tools with dimensions in the $1-5{\mu}m$ range and cutting edge radii of curvature of under 50nm.

Investigation of ultraprecision machining characteristics by molecular statics simulation method (분자정역학 기법을 이용한 초미세 절삭특성에 관한 고찰)

  • 정구현;이성창;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.122-129
    • /
    • 1997
  • Machining technology has emerged to the point of performing atomic-scale fabrication. In tail paper atomic-scale machining characteristics are investigated by using Molecular Statics simulation method. The cutting model used in this work simulates machining with tools such as an AFM. It is shown that built-up edge formation and cutting forces depend on tool tip geometry. Also, the material flow during cutting is shown for various cutting conditions such as depth of cut, rake angle, and edge radius of tool.

  • PDF

Development of Drill Geometry for Burr Minimization in Drilling (구멍가공시 버형성 최소화를 위한 드릴형상 개발)

  • 장재은;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.911-914
    • /
    • 1997
  • This Experiment was carried out for bur minimization in drilling. New drill geometries are proposed to minimize the burr formation in drilling operation. Three types of drills are made, champer, round and step drill. The burr formed in first cutting by front cutting edge ca be removed in second cutting by the cutting edges in chamfer, round edge and step. New burrs are formed by second cutting and can be minimized according to the change of drill geometry like, chamfer size and angle, corner radius in round drill and step size and angle in step drill. To measure the burr formed in drilling, laser sensor is used.

  • PDF

A Study on the Diamond Wheel Wear in Ceramic Grinding (세라믹 연삭에서 다이아몬드 숫돌 마멸에 관한 연구)

  • 공재향;유봉환;소의열;이근상;유은이
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-348
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness after using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous grinding of ceramics, cutting edge ratio of resinoid bond wheel decreases. For the case of vitrified bond wheel, cutting edge ratio does not change.

  • PDF

Geometrical Analysis of Helical Groove Machining for Manufacture of Twist Drill (트위스트 드릴제작을 위한 나선형 홈가공의 기하학적인 해석)

  • 고성림
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1643-1653
    • /
    • 1994
  • To facilitate the manufacturing of dull using CNC grinding machine, the simulation of helical groove machining with given wheel profile and setting condition is necessary. Considering the wheel as a collection of thin disks, the flute configuration is predicted in a cross section perpendicular to the axis and the grinding wheel profile is also predicted to machine the desired helical groove with given setting conditions. Two programs for these processes are developed. Using programs interactively, the helical groove machining process can be predicted more accurately. By clarifying the geometrical relation between the shape of cutting edge and the flute configuration in the cross section which is perpendicular to drill axis, it becomes possible to predict the necessary cross sectional shape of wheel for desired drill cutting edge shape. Some factors for the software are considered concerning prediction of accuracy and computing time.

Determination of Diamond Wheel Life in Ceramic Grinding (세라믹재 연삭시 다이아몬드 휠의 수명 판정)

  • 임홍섭;유봉환;공재향;김홍원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • In order to investigate the characteristics of diamond wheel grinding of ceramic materials, grinding resistance, surface roughness of ground surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of $Al_2O_3$, cutting edge ratio is bigger than that of $ZrO_2$ and $Si_3N_4$. That's because $Al_2O_3$ has a characteristic of low fracture toughness and bending stress.

A Study on the Determination of Diamond Wheel Life in Ceramic Grinding (세라믹 연삭에서 다이아몬드 휠의 수명 판정에 관한 연구)

  • 임홍섭;유봉환;소의열;이근상;사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.308-313
    • /
    • 2002
  • In order to investigate the characteristics of grinding and diamond wheel grinding ceramic materials, grinding resistance, surface roughness of worked surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of A1$_2$O$_3$, cutting edge ratio is begger than that of ZrO$_2$and Si$_3$N$_4$. That's because A1$_2$O$_3$has a characteristics of low fracture toughness and bending stress.

  • PDF

An analysis of cutting force according to specific force coefficients (비절삭저항 상수 변화에 따른 절삭력 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.108-116
    • /
    • 2014
  • Considering the run-out effect and cutting force coefficients, the cutting force profile of half immersion end-milling was analyzed in detail. The effects of three specific cutting-force coefficients and three edge-force coefficients are verified. Through a detailed investigation, it is proved that the radial cutting force coefficients and are the major factors which increase the cutting forces Fx and Fy in end-milling. However, the axial cutting force coefficients have no influence on the force Fx and Fy changes in end-milling. Also, the analyzed end-milling force model shows good consistency with the actual measured force with regard to Fx and Fy. Thus, this model can be used for the prediction of the force history in end-milling with run-out, and it incurs a different force history with different start and exit immersion angles as well as holding effects.