DOI QR코드

DOI QR Code

Recovery Process of Forest Edge Formed by Clear-cutting Harvest in Korean Red Pine (Pinus densiflora) Forest in Gangwondo, South Korea

강원도 남부 지역에서 소나무림 벌채 후 형성된 숲 가장자리의 회복 과정

  • Kim, Jun-Soo (Nature and Forest Research Institute) ;
  • Cho, Yong-Chan (Plant Conservation Division, Korea National Aboretum) ;
  • Bae, Kwan-Ho (School of Ecology and Environmental System, Kyungpook National University)
  • 김준수 ((주)자연과숲연구소) ;
  • 조용찬 (국립수목원 산림자원보존과) ;
  • 배관호 (경북대학교 생태환경시스템학부)
  • Received : 2016.10.08
  • Accepted : 2017.01.12
  • Published : 2017.03.31

Abstract

Forest harvest as large scale artificial disturbance makes edge environment in both clear-cutted and forested habitat. To clarify the development and recovery process of forest edge after disturbances is essential to understand vegetation responses and landscape level consequences such as edge-distance. In Korea, after clear-cutting, edge-related changes of environment and vegetation was not clarified yet. In Korean red pine (Pinus densiflora) forest, by applying space-for-time approach (sites with undisturbed and 1, 3, 10, 16 yr after cutting), the edge-related change of plant abundance and abiotic factors were determined for 20 line-transect (60 m) and 340 ($1m{\times}5m$) quadrats, and clarified depth and duration of the disturbance. Immediately after edge formation, within 15m form the edge, biotic and abiotic factors such as cover, richness, canopy openness, temperature and moisture content exhibited larger changes compared to forest interior. Plant abundance and abiotic variables were stabilized at the level of forest inside within 16 yr and 10 yr after edge creation, respectively. Woody (tree and shrub) species generally was showed larger increment with proximity to edge than did herb or graminoid species. In addition, negative interactions between woody and herbaceous species were detected during the period of forest edge closure. Our results suggested that depth of forest edge formed by clear-cutting of Korean red pine forest was at least from 15 m to 20 m and edge effect were likely sustained more than 16 years. As the first empirical study on edge-distance between two contrast habitats of clear-cutted and adjacent forest in South Korea, the analytical reality on landscape structure and habitat patches can be improved.

산림 벌채 후 형성되는 가장자리 효과의 발생 여부과 회복 과정을 이해하는 것은 생태계 천이와 경관 및 서식지의 공간 영향을 분석하고 이해하는 필수 요소임에도 불구하고, 우리나라에서 관련 주제의 실증 연구는 찾아보기 어렵다. 본 연구는 강원 남부 지역의 소나무림 벌채 후 1, 3, 10, 16년이 경과한 장소에 형성된 벌채지 및 임내 가장자리에서 비생물 및 생물 요인의 변화 양상을 선 (20개) 및 방형구 (340개) 조사법을 병용하여 조사하였다. 벌채 후 초기(3년 이내)는 가장 자리에서 인접 숲 내부 방향으로, 15m 깊이까지 식생 피도, 풍부도, 수관 열림도, 그리고 대기 온도 및 습도가 급격하게 변화하였다. 가장자리 형성 이후, 비생물 요인 및 식물 풍부도의 안정화는 각각 10년 및 16년이 소요되었다. 교목종이 초본식물에 비하여 가장자리 환경에서 더 높은 증가 양상을 나타내었고, 교목종의 높은 증가는 하층식생의 동태에 영향을 주었다. 본 연구 결과를 통해 벌채에 의한 직 간접적인 서식지 변화는 최소 인접 산림의 15 m에서 20 m까지, 그리고 16년 수준까지 지속적으로 영향을 미치는 것으로 나타났다. 본 연구 결과는 경관 및 서식지 패치 평가에 필수적인 가장자리 효과의 깊이에 대한 첫 국내 첫 실증 연구자료로 친환경벌채 기준제시 등 활용성이 높다.

Keywords

References

  1. Bae, K.H., Kim, J.S., Lee, C.S., Cho, H.J., Lee, H.Y. and Cho, Y.C. 2014. Initial development of forest structure and understory vegetation after clear-cut in Pinus densiflora forest in Southern Gangwon-do province. Journal of Korean Forest Society 103(1): 23-29. https://doi.org/10.14578/jkfs.2014.103.1.23
  2. Baker, J., French, K. and Whelan, R. J. 2002. Bird communities across a natural edge in Southeastern Australia. Ecology 83(11): 3048-3059. https://doi.org/10.1890/0012-9658(2002)083[3048:TEEAES]2.0.CO;2
  3. Barbour, M.G., Burk J.H., Pitts, W.D. and Gilliam, F.S. 1999. Terrestrial Plant Ecology 3rd Ed. Addison Wesley Longman, New York.
  4. Batary, P. and Baldi, A. 2004. Evidence of an edge effect on avian nest success. Conservation Biology 18: 389-400. doi: 10.1111/j.1523-1739.2004.00184.x
  5. Chen, J., Franklin, J.F. and Spies, T.A. 1993. Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and forest meteorology 63: 219-237. https://doi.org/10.1016/0168-1923(93)90061-L
  6. Chen, J., Franklin, J.F. and Spies, T.A. 1995. Growing‐season microclimatic gradients from clearcut edges into old‐growth douglas‐fir forests. Ecological Applications 5(1): 74-86. https://doi.org/10.2307/1942053
  7. Cho, Y.C., Kim, J.S., Lee, C.S., Cho, H.J., Lee, H.Y. and Bae, K.H. 2011. Early successional change of vegetation composition after clear cutting in Pinus densiflora stands in Southern Gangwon province. Journal of Korean Forest Society 100(2): 240-245.
  8. Demaynadier, P.G. and Hunter, M.L. 1998. Effects of silvicultural edges on the distribution and abundance of amphibians in Maine. Conservation Biology 12(2): 340-352. https://doi.org/10.1046/j.1523-1739.1998.96412.x
  9. Denyer, K., Burns, B. and Ogden, J. 2006. Buffering of native forest edge microclimate by adjoining tree plantations. Austral Ecology 31: 478-489. https://doi.org/10.1111/j.1442-9993.2006.01609.x
  10. Fox, B.J., Taylor, J.E., Fox, M.D. and Williams, C. 1997. Vegetation changes across edges of rainforest remnants. Biological Conservation 82: 1-13. https://doi.org/10.1016/S0006-3207(97)00011-6
  11. Fraver, S. 1994. Vegetation responses along edge-to-interior gradients in the mixed hardwood forests of the Roanoke River Basin, North Carolina. Conservation Biology 8: 822-832. https://doi.org/10.1046/j.1523-1739.1994.08030822.x
  12. Frazer, G.W., Canham, C.D. and Lertzman, K.P. 1999. Gap light analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Frazer University, Burnaby, BC, and the Institute of Ecosystem Studies, Millbrook, NY.
  13. Gehlhausen, S.M., Schwartz, M.W. and Augspurger, C.K. 2000. Vegetation and microclimatic edge effects in two mixedmesophytic forest fragments. Plant Ecology 147:21-35. https://doi.org/10.1023/A:1009846507652
  14. Honnay, O., Verheyen, K. and Hermy, M. 2002. Permeability of ancient forest edges for weedy plant species invasion. Forest Ecology and Management 161: 109-122. https://doi.org/10.1016/S0378-1127(01)00490-X
  15. Jose, S., Gillespie, A.R., George, S.J. and Kumar, B.M., 1996. Vegetation responses along edge-to-interior gradients in a high altitude tropical forest in peninsular India. Forest Ecology and Management 87: 51-62. https://doi.org/10.1016/S0378-1127(96)03836-4
  16. Jung, S.G., Oh, J.H. and Park, K.H. 2005. A temporal structure analysis of forest landscape patterns using landscape indices in the Nakdong river basin. Journal of the Korean Association of Geographic Information Studies 8(2): 145-156.
  17. Kapos, V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Journal of Tropical Ecology 5(2): 173-185. https://doi.org/10.1017/S0266467400003448
  18. Kim, J.S. and Kim, T.Y. 2011. Woody Plants of Korean Peninsula. Dolbegae, Paju. (In Korean)
  19. Korea Forest Service. 2015 Korean Plant Names Index. http://www.nature.go.kr/kpni/SubIndex.do (2016.7.1.) (In Korean)
  20. Lee, T.B. 2004. Colored flora of Korea. Hyangmoonsa, Seoul.
  21. Lee, W.S., Park, K.H. and Kim, D.P. 2008. The analysis of landscape ecological effects of forest by trail-buidling. Korean Journal of Environmental Ecology 22(2): 128-137.
  22. Lutz, J.A. and Halpern, C.B. 2006. Tree mortality during early forest development: A long-term study of rates, cuases, and consequences. Ecological Monographs, 76(2): 257-275. https://doi.org/10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2
  23. MacNeil, J.E. and Williams, R.N. 2014. Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders. PLoS ONE 9(12): e114683. doi:10.1371/journal.pone. 0114683.
  24. Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford, UK.
  25. Marchand, P. and Houle, G. 2006. Spatial patterns of plant species richness along a forest edge: What are their determinants?. Forest Ecology and Management 223: 113-124. https://doi.org/10.1016/j.foreco.2005.10.064
  26. Matlack, G.R. 1993. Microenvironment variation within and environmental heterogeneity. Vegetatio 84: 1-7.
  27. Matlack, G.R. 1994. Vegetation dynamics of the forest edgetrends in space and successional time. Journal of Ecology 82: 113-123. https://doi.org/10.2307/2261391
  28. Moseley, K.R. Ford, W.M. and Edwards, J.W. 2009. Local and landscape scale factors influencing edge effects on woodland salamanders. Environmental Monitoring and Asssessment 151: 425-435. doi: 10.1007/s10661-008-0286-6.
  29. Nelson, C.R. and Halpern, C.B. 2005. Edge-related responses of understory plants to aggregated retention harvest in the pacific northwest. Ecological Applications 15(1): 196-209. https://doi.org/10.1890/03-6002
  30. Oh, K.K, Jee, Y.K., Shim, H.Y. and Kim, S.H. 2005. Monitoring the development precess of edge vegetation structure in deciduous broad-leaved forest (II). Korean Journal of Environmental Ecology 19(3): 258-268.
  31. Oh, K.K., Kwon, T.H. and Yang, M.Y. 1989. Edge vegetation structure in Kaya mountain national park. Korean Journal of Environmental Ecology 3(1): 51-69.
  32. Raynor, G.S. 1971. Wind and temperature structure in a coniferous forest and a contiguous field. Forest Science 17(3): 351-363.
  33. Ries, L., Fletcher Jr, R.J., Battin, J. and Sisk, T.D. 2004. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annual Review of Ecology, Evolution, and Systematics 491-522.
  34. Shannon, C.E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27: 379-423 and 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  35. Williams-Linera, G. 1990. Vegetation structure and environmental conditions of forest edges in Panama. Journal of Ecology 78 (2): 356-373. https://doi.org/10.2307/2261117
  36. Zang, M., Kim, J.S., Cho, Y.C., Bae, S.W., Yun, C.W., Byun, B.K. and Bae, W.H. 2013. Initial responses of understory vegetation to 15% aggregated retention harvest in mature oak (Quercus mongolica) forest in Gyungsangbukdo. Journal of Korean Forest Society 102(2): 239-246.

Cited by

  1. 산림생태계 보호구역에서 외래식물 분포 예측을 위한 최적 모형의 선발 vol.34, pp.6, 2017, https://doi.org/10.13047/kjee.2020.34.6.589