• Title/Summary/Keyword: Cut in RPM

Search Result 64, Processing Time 0.025 seconds

In Vitro Propagation of Guzmania cv. Cherry by Axillary Shoot Culture (측지배양에 의한 Guzmania cv. Cherry의 기내 대량번식)

  • 한봉희;최성렬;정향영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.1
    • /
    • pp.33-36
    • /
    • 1998
  • Guzmania was propagated through in vitro culture of lateral shoots. When new shoots grown in greenhouse were cut and cultured in vitro, contamination rate was very high at about 80% in the first stage of in vitro culture. Among cytokinin treatments for agar medium, 2.0 mg/L BA was most effective for shoot multiplication, and those with 0.5 mg/L kinetin and 0.5~1.0 mg/L BA were favorable for shoot multiplication. BA was more effective for shoot multiplication than kinetin, and shoot multiplication was more enhanced when 2.0 mg/L BA was combined with 0.1~0.5 mg/L IAA than 2.0 mg/L BA alone. The medium with 2.0 mg/L BA and 0.1 mg/L IAA showed the highest rate of shoot multiplication with about 8.7 in shoot number, and those with 2.0 mg/L BA and 0.5~1.0 mg/L IAA also resulted in high multiplication of shoots. Shoots were multiplicated more in liquid rotation culture(80 rpm) with the medium containing 0.5 mg/L BA and 0.1 mg/L IAA than liquid stagnating and solid cultures. Regenerated shoots formed roots very favorably in the medium supplemented with 2.0 mg/L IBA.

  • PDF

Evaluation of the Shape Accuracy of Turning Operations (선삭가공에서의 형상 정밀도에 대한 평가)

  • Park, Dong-Keun;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1645-1651
    • /
    • 2015
  • This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.

Studies on Cu Dual-damascene Processes for Fabrication of Sub-0.2${\mu}m$ Multi-level Interconnects (Sub-0.2${\mu}m$ 다층 금속배선 제작을 위한 Cu Dual-dmascene공정 연구)

  • Chae, Yeon-Sik;Kim, Dong-Il;Youn, Kwan-Ki;Kim, Il-Hyeong;Rhee, Jin-Koo;Park, Jang-Hwan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.37-42
    • /
    • 1999
  • In this paper, some of main processes for the next generation integrated circuits, such as Cu damascene process using CMP, electron beam lithography, $SiO_2$ CVD and RIE, Ti/Cu-CVD were carried cut and then, two level Cu interconnects were accomplished. In the results of CMP unit processes, a 4,635 ${\AA}$/min of removal rate, a selectivity of Cu : $SiO_2$ of 150:1, a uniformity of 4.0% are obtained under process conditions of a head pressure of 4 PSI, table and head speed of 25rpm, a oscillation distance of 40 mm, and a slurry flow rate of 40 ml/min. Also 0.18 ${\mu}m\;SiO_2$ via-line patterns are fabricated using 1000 ${\mu}C/cm^2$ dose, 6 minute and 30 second development time and 1 minute and 30 second etching time. And finally sub-0.2 ${\mu}$ twolevel metal interconnects using the developed processes were fabricated and the problems of multilevel interconnects are discussed.

  • PDF

Ion chromatographic determination of chlorite and chlorate in chlorinated food using a hydroxide eluent

  • Kim, Dasom;Jung, Sungjin;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, Hekap
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.57-67
    • /
    • 2017
  • This study was conducted to develop an analytical technique for determination of chlorite and chlorate concentrations in fresh-cut food and dried fish products by an ion chromatography/conductivity detection method using a hydroxide mobile phase. Deionized water was added to homogenized samples, which were then extracted by ultrasound extraction and centrifuged at high speed (8,500 rpm). Subsequently, a Sep-Pak tC18 cartridge was used to purify the supernatant. Chlorite and chlorate ions were separated using 20 mM KOH solution as the mobile phase and Dionex IonPac AS27 column as the stationary phase. Ethylenediamine was used as sample preservative and dibromoacetate was added to adjust for the disparity in extraction efficiencies between the food samples. The method detection limit) for chlorite and chlorate were estimated to be 0.2 mg/kg and 0.1 mg/kg, respectively, and the coefficient of determination ($r^2$) that denotes the linearity of their calibration curves were correspondingly measured to be 0.9973 and 0.9987. The recovery rate for each ion was 92.1 % and 96.3 %, with relative standard deviations of 7.47 % and 6.18 %, respectively. Although neither chlorite nor chlorate was detected in the food samples, the analytical technique developed in this study may potentially be used in the analysis of disinfected food products.

A Study on the Development and Surface Roughness of Roller Cam SCM415 by 5-Axis Machining (5축 가공에 의한 SCM415 롤러 캠 개발과 표면조도 연구)

  • Kim, Jin Su;Lee, Dong Seop;Kang, Seong Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.397-402
    • /
    • 2013
  • In this study, we carried out the each lines of section, using GC (green silicon carbide) whetstone, the SCM415 material which separated by after and before heat treatments process, in 3+2 axis machining centers for integrated grinding after cutting end mill works, the spindle speed 8000 rpm and feed rate 150 mm/min. For the analysis of the centerline average roughness (Ra), we measured by 10 steps stages. Using Finite element analysis, we found the result of the load analysis effect of the assembly parts, when applied the 11 kg's load on both side of the ATC (Automatic tool change) arm. The result is as follows. For the centerline average roughness (Ra) in the non-heat treatment work pieces, are appeared the most favorable in the tenth section are $0.510{\mu}m$, that were shown in the near the straight line section which is the smallest deformation of curve. In addition, the bad surface roughness appears on the path is to long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

The Measurement of Vacuum Pressure for the Multi-Stage Rotors of Disk-Type Molecular Drag Pump (원판형 분자 드래그펌프 다단 회전자에 대한 압력분포 측정)

  • Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.272-280
    • /
    • 2009
  • In this study is performed to investigate the pumping characteristics of three-stage disk-type molecular drag pump (DTDP). The experiments are measured using five vacuum pressure gauges in the positions for rotors of DTDP. The experimented DTDP is consisted of three rotors and four stator. In the DTDP, spiral channels of three rotors are cut on the both upper surface and lower surface of a rotating disk, and corresponding stator is a planar disk. The experiments are performed in the outlet pressure range of $0.2{\sim}533\;Pa$. The pressure of each rotors are measured under the various condition of outlet pressure and throughputs, and nitrogen gas is used for test gas. In the numerical study, the pumping characteristics of each rotor are studied for the variation of throughputs in the all rotating channel. Pressure contour and velocity are obtained by the numerical simulation.

In vitro evaluation of a removable partial denture framework using multi-directionally forged titanium

  • Suzuki, Ginga;Shimizu, Satoshi;Torii, Mana;Tokue, Ai;Ying, Guo;Yoshinari, Masao;Hoshi, Noriyuki;Kimoto, Katsuhiko;Miura, Hiromi;Hayakawa, Tohru;Ohkubo, Chikahiro
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.369-375
    • /
    • 2020
  • PURPOSE. This study evaluated the availability of multi-directionally forged (MDF) titanium (Ti) as a component of removable partial dentures (RPDs). MDF-Ti remarkably improved the mechanical properties of RPDs due to its ultrafine-grained structure. MATERIALS AND METHODS. The wear resistance, plaque adhesion, and machinability of MDF-Ti were tested. As controls, commercially pure (CP) titanium was used for wear, plaque adhesion, and machinability tests. For wear resistance, the volume losses of the titanium teeth before and after wear tests were evaluated. Plaque adhesion was evaluated by the assay of Streptococcus mutans. In the machinability test, samples were cut and ground by a steel fissure bur and carborundum (SiC) point. An unpaired t-test was employed for the analysis of the significant differences between MDF-Ti and the control in the results for each test. RESULTS. Wear resistance and plaque adherence of MDF-Ti similar to those of CP-Ti (P>.05) were indicated. MDF-Ti exhibited significantly larger volume loss than CP-Ti in all conditions except 100/30,000 g/rpm in machinability tests (P<.05). CONCLUSION. Although the wear resistance and plaque adherence of MDF-Ti were comparable to those of controls, MDF-Ti showed better machinability than did CP-Ti. MDF-Ti could be used as a framework material for RPDs.

Spark Plasma Sintering and Ultra-Precision Machining Characteristics of SiC

  • Son, Hyeon-Taek;Kim, Dae-Guen;Park, Soon-Sub;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.559-569
    • /
    • 2010
  • The liquid-phase sintering method was used to prepare a glass lens forming core composed of SiC-$Al_2O_3-Y_2O_3$. Spark plasma sintering was used to obtain dense sintered bodies. The sintering characteristics of different SiC sources and compositions of additives were studied. Results revealed that, owing to its initial larger surface area, $\alpha$-SiC offers sinterability that is superior to that of $\beta$-SiC. A maximum density of $3.32\;g/cm^3$ (theoretical density [TD] of 99.7%) was obtained in $\alpha$-SiC-10 wt% ($6Al_2O_3-4Y_2O_3$) sintered at $1850^{\circ}C$ without high-energy ball milling. The maximum hardness and compression stress of the sintered body reached 2870 Hv and 1110 MPa, respectively. The optimum ultra-precision machining parameters were a grinding speed of 1243 m/min, work spindle rotation rate of 100 rpm, feed rate of 0.5 mm/min, and depth of cut of $0.2\;{\mu}m$. The surface roughnesses of the thus prepared final products were Ra = 4.3 nm and Rt = 55.3 nm for the aspheric lens forming core and Ra = 4.4 nm and Rt = 41.9 for the spherical lens forming core. These values were found to be sufficiently low, and the cores showed good compatibility between SiC and the diamond-like carbon (DLC) coating material. Thus, these glass lens forming cores have great potential for application in the lens industry.

Technical Feasibility of Ethanol-Kerosene Blends for Farm Kerosene Engines (에타놀-석유(石油) 혼합연료(混合燃料)의 농용석유(農用石油)엔진에의 이용(利用)에 관(關)한 연구(硏究))

  • Bae, Yeong Hwan;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-61
    • /
    • 1982
  • As an attempt to reduce the consumption of petroleum resources and to improve the performance of a kerosene engine, a series of experiments was conducted using several kinds of ethanol-kerosene blends under the various compression ratios. The engine used in this study was a single-cylinder, four-cycle kerosene engine having a compression ratio of 4.5. To investigate the feasibility of ethanol-kerosene blends in the original engine, kerosene and blends of 5-percent, 10-percent, and 20-percent-ethanol, by volume, with kerosene were used. And to investigate the feasibility of improving the performance of the kerosene engine, a portion of the cylinder head was cut off to increase the compression ratio up to 5.0 by reducing the combustion chamber volume. Kerosene and blends of 30-percent and 40-percent-ethanol, by volume, with kerosene were used for the modified engine with an increased compression ratio. Variable speed tests at wide-open throttle were also conducted at five speed levels in the range of 1000 to 2200 rpm for each compression ratio and fuel type. Volumetric efficiency, engine torque, and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heating values of kerosene and ethanol was calculated. The results obtained in the study are summarized as follows: A. Test with the original engine: (1) No abnormal conditions were found when burning ethanol-kerosene blends in the original engine. (2) Volumetric efficiency increased with ethanol concentration in blends. When burning blends of 5-percent, 10-percent, and 20-percent ethanol, by volume, with kerosene, average volumetric efficiency increased 1.6 percent, 2.6 percent, and 4.1 percent respectively, than when burning kerosene. (3) Mean engine torque increased 5.2 percent for 5-percent-ethanol blend, 9.3 percent for 10-percent-ethanol blend, and 11.5 percent for 20-percent-ethanol blend than for kerosene. Increase in engine torque when using ethanol-kerosene blends was due to the improved combustion characteristics of ethanol as well as an increase in volumetric efficiency. (4) Up to ethanol concentration of 20 percent, mean brake specific fuel consumption was nearly constant inspite of the difference in heating value between ethanol and kerosene. (5) Brake thermal efficiency increased 0.3 percent for 5-percent-ethanol blend, 3.8 percent for 10-percent-ethanol blend, and 6.8 percent for 20-percent-ethanol blend than for kerosene. B. Test with the modified engine with an increased compression ratio: (1) When burning kerosene, mean volumetric efficiency, engine torque, and brake thermal efficiency were somewhat lower than for the original engine. (2) Engine torque increased 15.1 percent for 30-percent-ethanol blend and 18.4 percent for 40-percent-ethanol blend than for kerosene. (3) There was no significant difference in brake specific fuel consumption regardless of ethanol concentration in blends. (4) Brake thermal efficiency increased 15.0 percent for 30-percent-ethanol blend and 19. 5 percent for 40-percent-ethanol blend than for kerosene.

  • PDF

Micropropagation of Cassava by Suspension Culture Derived from its Nodal Explants (마디 절편의 현탁배양에 의한 카사바의 미세증식)

  • Yoon, Sil;Cho, Duck-Yee;Soh, Woong Young
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.3
    • /
    • pp.185-189
    • /
    • 2000
  • For the micropropagation, node explants of cassava were cultured in liquid MS medium with various concentrations of cytokinins on a rotary shaker (100 rpm) for 2 weeks. The adventitious roots and shoots from the explants were differentiated more efficiently in liquid medium than in solid. But root formation was not inhibited in medium with BAP and kinetin at low concentration (>0.05 mg 1/sup -1/), while in medium added with BAP and zeatin at high level (<0.25 mg 1/sup -1/), it was inhibited by callus forming on cut end of the cuttings. However, all of plantlets grown in liquid medium for more than 2 weeks showed symptoms of hyperhydricity. The plantlets grown in liquid medium were transferred into culture bottles filled with fine sand or artificial soil (pitmoss:perlite:vermiculite, 1:1:1 v/v) wetted with half strength of Knop's solution. After transplanted to culture bottles, some of vitriscent leaves were defoliated and new leaves were normally formed from shoot apex. Most of plantlets (>95%) were hardened-off successfully only in culture bottles with fine sand, and grew into 3-5 cm seedlings possessing 4-6 nodes after 4 weeks. Thus, the mass propagation of cassava on medium containing cytokinin could be established based on the suspension culture using node explants.

  • PDF