• Title/Summary/Keyword: Curves

Search Result 8,468, Processing Time 0.037 seconds

DEGREE ELEVATION OF B-SPLINE CURVES AND ITS MATRIX REPRESENTATION

  • LEE, BYUNG-GOOK;PARK, YUNBEOM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 2000
  • An algorithmic approach to degree elevation of B-spline curves is presented. The new algorithms are based on the blossoming process and its matrix representation. The elevation method is introduced that consists of the following steps: (a) decompose the B-spline curve into piecewise $B{\acute{e}}zier$ curves, (b) degree elevate each $B{\acute{e}}zier$ piece, and (c) compose the piecewise $B{\acute{e}}zier$ curves into B-spline curve.

  • PDF

DEGREE ELEVATION OF NURBS CURVES BY WEIGHTED BLOSSOM

  • Lee, Byung-Gook;Park, Yun-Beom
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.151-165
    • /
    • 2002
  • An a1gorithmic approach to degree elevation of NURBS curves is presented. The new algorithms are based on the weighted blossoming process and its matrix representation. The elevation method is introduced that consists of the following steps: (1) decompose the NURBS curve into piecewise rational Bezier curves, (b) elevate the degree of each rational Bezier piece, and (c) compose the piecewise rational Bezier curves into NURBS curve.

FRENET EQUATIONS OF NULL CURVES

  • Jin, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.10 no.2
    • /
    • pp.71-102
    • /
    • 2003
  • The purpose of this paper is to study the geometry of null curves in a 6-dimensional semi-Riemannian manifold $M_q$ of index q, since the general n-dimensional cases are too complicated. We show that it is possible to construct three types of Frenet equations of null curves in $M_q$, supported by one example. We find each types of Frenet equations invariant under any causal change. And we discuss some properties of null curves in $M_q$.

  • PDF

ON SLANT CURVES IN S-MANIFOLDS

  • Guvenc, Saban;Ozgur, Cihan
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.293-303
    • /
    • 2018
  • In this paper, we consider biharmonic slant curves in S-space forms. We obtain a main theorem, which gives us four different cases to find curvature conditions for these curves. We also give examples of slant curves in ${\mathbb{R}}^{2n+s}(-3s)$.

DOUBLE COVERS OF PLANE CURVES OF DEGREE SIX WITH ALMOST TOTAL FLEXES

  • Kim, Seon Jeong;Komeda, Jiryo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1159-1186
    • /
    • 2019
  • In this paper, we study plane curves of degree 6 with points whose multiplicities of the tangents are 5. We determine all the Weierstrass semigroups of ramification points on double covers of the plane curves when the genera of the covering curves are greater than 29 and the ramification points are on the points with multiplicity 5 of the tangent.

CIRCLE APPROXIMATION USING PARAMETRIC POLYNOMIAL CURVES OF HIGH DEGREE IN EXPLICIT FORM

  • Ahn, Young Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1259-1267
    • /
    • 2022
  • In this paper we present a full circle approximation method using parametric polynomial curves with algebraic coefficients which are curvature continuous at both endpoints. Our method yields the n-th degree parametric polynomial curves which have a total number of 2n contacts with the full circle at both endpoints and the midpoint. The parametric polynomial approximants have algebraic coefficients involving rational numbers and radicals for degree higher than four. We obtain the exact Hausdorff distances between the circle and the approximation curves.

SECOND MAIN THEOREM FOR HOLOMORPHIC CURVES INTO ALGEBRAIC VARIETIES WITH THE MOVING TARGETS ON AN ANGULAR DOMAIN

  • Chen, Jiali;Zhang, Qingcai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1191-1213
    • /
    • 2022
  • In this paper, we will prove the second main theorem for holomorphic curves intersecting the moving hypersurfaces in subgeneral position with index on an angular domain. Our results are an extension of the previous second main theorems for holomorphic curves with moving targets on an angular domain.

RESTRICTION ESTIMATES FOR ARBITRARY CONVEX CURVES IN R2

  • Choi, Boo-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • We study the restriction estimate of Fourier transform to arbitrary convex curves in $R^2$ with no regularity assumption. Assuming that the convex curve has the lower bound of curvatures, we extend the restriction results from smooth convex curves to arbitrary convex curves. Our work has been motivated by the lecture notes of Terence Tao. The bilinear approach and geometric observations play an important role.

Blending Surface Using Rail Curves (접촉 곡선을 이용한 BLENDING 곡면)

  • Lee, Hi-Koan;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.114-121
    • /
    • 1995
  • This paper describes a method which uses rail curves for blending surfaces. Blending surface between the free form surfaces which have the flexible shapes and are widely used today is investigated. The rail curves give blending surface continuty through Pointwise interpola- tion. It is the point in this paper that the blending surfaces give a good flexibility to modeling of base free form surfaces. Using rail curves for simple base surfaces, complicated models can be designed. Also this blending surfaces can be used for path generation in compoud surfaces.

  • PDF