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Abstract. In this paper, we investigate the spherical indicatrices of a new relationship

between Bertrand pair curves in Euclidean 3-space. We obtain necessary and sufficient

conditions for this type of Bertrand pair curves to be slant helix, and provide an example.

1. Introduction

In 1802, Lancret [17] defined a helix as a curve whose tangent vector makes a
constant angle with a fixed straight line, called the directrix. Later in 1845, Saint
Venant [21] showed that a necessary and sufficient condition for a curve to be a
general helix is that the ratio of curvature to torsion be a constant. In 1995, Scofield
studied closed-form arc-length parametrizations for curves of constant precession
and slant helices with a constant speed of precession [23]. In 2004, Izumiya and
Takeuchi introduced the concept of slant helix in E3 saying that the principal normal
lines make a constant angle with a fixed direction. They showed a curve to be a
slant helix if and only if the principal image of the major normal indicatrix has
a constant geodesic curvature [14]. In 2005, Kula and Yayli investigated spherical
indicatrices of a slant helix and showed that the curve of constant precession is a
slant helix in E3 [15]. A family of curves with constant curvature but non-constant
torsion is called Salkowski and a family of curves with constant torsion but non-
constant curvature is called anti-Salkowski [22]. In 2009, Monterde studied some
characterizations of these curves and he proved that the principal normal vector
makes a constant angle with a fixed straight line [20]. In 2010, Kula et al. studied
the relationship between slant helices and helices and they characterized slant helices
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in E3 in terms of differential equations [16]. In 2011, Ali and Lopez studied slant
helix in Minkowski 3-space [1]. In 2012, Ali studied the position vector of a slant
helix with respect to the standard frame in terms of Frenet equations in E3 [2].
In 2013, Camci et al. studied spherical slant helix in E3 [8]. In 2014, Menninger
studied a generic characterization of the slant helix in E3 in terms of its curvature
and torsion and derived an explicit arc-length parametrization of its tangent vector
[19]. In 2019, Yilmaz and Has studied the position vectors of slant helices using an
alternative moving frame in Minkowski 3-space [29]. In the fields of computer-aided
design and computer graphics, helices can be used for the tool path description, the
simulation of kinematic motion, the design of highways, etc. [28]. Helix and slant
helix curves play an important role in curve theory, and have numerous applications
in biological sciences, physics, etc. For instance, in biological sciences, curves are
used in the analysis of Deoxyribonucleic Acid (DNA), and in physics, they are used
in characterizing the motion of particles in a magnetic field.

In 1845, Saint Venant [21] posed a question whether the principal normal of
a curve is the principal normal of another curve on the surface generated by the
principal normal of the given one. Bertrand [7] gave an answer to this question
in 1850 and introduced curves with a property that the principal normal vector
of a curve α coincides with the principal normal vector of another curve α∗ at
their corresponding points. Further, these curves were characterized in E3 with
condition ak + bτ = 1, where a and b are nonzero constants and k and τ are
the curvature and torsion of the curve, respectively [11]. In [18], Matsuda and
Yorozu studied generalized Bertrand curves in E4. Llater they were studied in En

by Cheng and Lin [10]. The spherical indicatrix is useful to visualize the motion
of an indicatrix on a sphere with the help of the Frenet frame of the curve. In [5],
Babaarslan and Yayli examined Bertrand curves of the tangent, normal, binormal,
and Darboux indicatrices of a space curve in E3. In [25], Tuncer and Unal studied
a new representation of spherical indicatrices of Bertrand pair curves in E3. On the
other hand, the Bertrand pair curves were studied in pseudo-Riemannian spaces by
many authors, please see [4, 6, 13, 26, 27] and the references therein.

In [9], Camci, et al. introduced a new relationship between Bertrand pair

curves α and α∗ in E3 by not taking the vector
−−→
α∗α parallel to a normal vector

of Bertrand curve α. Using this approach, the authors introduced and studied a
new parametrization of Bertrand partner D-curves in Euclidean 3-space [24].

In view of this, we study the spherical indicatrices of such Bertrand pair curves
in E3. The paper is organized as follows: In Section 2 we recall some basic notation
for curves that will be used in the rest of the paper. In Section 3, we study the
spherical indicatrices of homothetic Bertrand pair curves. Section 4 is devoted to
the study of spherical indicatrices of non-homothetic Bertrand pair curves, and to
obtain a characterization of the Bertrand pair curves that are slant helix. Also, in
this section, we provide an example of such pair curves.
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2. Some Basic Concepts and Related Results

Let α = α(s) be a regular unit speed curve in the Euclidean 3-space where s
denotes arc-length. The Frenet formula of the curve α is given by [11]

(2.1)

 T ′

N ′

B′

 =

 0 k 0
−k 0 τ
0 − τ 0

 T
N
B

 ,

where triplet (T,N,B) denotes the Frenet frame and k, τ are curvature and torsion
of α, respectively.

Definition 2.1. For a given point, a set of curves such that any straight line
through the point intersects all the curves in the set at the same angle, then these set
of curves are called homothetic curves [12]. Otherwise, it is called non-homothetic
curves.

In [9], the authors introduced a new relationship between a pair of Bertrand
curves α and α∗ as follows:

(2.2) α∗(s∗) = α(s) + u(s)T (s) + v(s)N(s) + w(s)B(s),

where u(s), v(s) and w(s) are differentiable functions. Furthermore, they obtained
the following result:

Theorem 2.2. ([9]) Let α and α∗ be Bertrand pair curves with Frenet frames
(T,N,B) and (T ∗, N∗, B∗) satisfying (2.2). If

(i) there exist a homothety map between Bertrand pair curves α and α∗, then

(2.3) T = ϵ1T
∗, N = ϵ1N

∗, B = ϵ1B
∗,

(2.4) T ∗ = ϵ1T,N
∗ = ϵ1N,B

∗ = ϵ1B,

(2.5) k = ϵ1k
∗(1 + u′ − vk), τ = ϵ1τ

∗(1 + u′ − vk),

(2.6) k∗ =
ϵ1k

(1 + u′ − vk)
, τ∗ =

ϵ1τ

(1 + u′ − vk)
,

(2.7)
ds∗

ds
= ϵ1(1 + u′ − vk).

(ii) there does not exist homothety map between Bertrand pair curves α and α∗,
then
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(2.8)

{
T = m1m2m3√

1+h2
(m2m3hT

∗ −B∗), N = m1m2N
∗,

B = m1m2m3√
1+h2

(m2m3T
∗ + hB∗),

(2.9) T ∗ =
m1

h2 + 1
(hT +B), N∗ = m1m2N, B

∗ =
m1m2m3√
h2 + 1

(−T + hB),

(2.10)

{
k = m1m2m3(w

′ + vτ)(hm3k
∗ +m2τ

∗),

τ = −m1m2m3(w
′ + vτ)(m3k

∗ −m2hτ
∗),

(2.11) k∗ =
m1m2(hk − τ)

(w′ + vτ)(h2 + 1)
, τ∗ =

m1m3(k + hτ)

(w′ + vτ)(h2 + 1)
,

(2.12)
ds∗

ds
= m1(w

′ + vτ)
√
h2 + 1,

where ϵ1,m1,m2,m3 ∈ {−1, 1}, w′ + vτ ̸= 0, k, τ, s and k∗, τ∗, s∗ are non-zero cur-
vatures, torsions and arc-lengths of α and α∗, respectively and h is a constant given
by h= 1+u′−vk

w′+vτ .

Izumiya and Takeuchi [14] characterized a curve to be a slant helix if and only if
the principal image of the major normal indicatrix has a constant geodesic curvature
kg, i.e.,

(2.13) kg =
(τ
k

)′ k2

(k2 + τ2)3/2

is a constant function.

Following are the examples of slant helices:

Example 2.3. ([9]) The curve α given by

α(s) =
(−3√

2
cos

√
2s sin s+ 2 cos s sin

√
2s,

−3√
2
sin

√
2s sin s− 2 cos s cos

√
2s,

1√
2
sin s

)
is a slant helix with k(s) = sin s, τ(s) = cos s and kg = −1.

Example 2.4. ([3]) The curve γ given by

γ(s) =
(−1

3

√
s2 + 1 cos(3 arctan s),

−1

3

√
s2 + 1 sin(3 arctan s),

2
√
2

3

√
s2 + 1

)
is a slant helix with k(s) = 2

√
2

(s2+1)3/2
, τ(s) = 2

√
2s

(s2+1)3/2
and kg = 1

2
√
2
.



Spherical Indicatrix of a New Approach to Bertrand Curves in Euclidean 3-space 267

Figure 1: curve α. Figure 2: curve γ.

Example 2.5. ([2]) The Salkowski curve given by

ψ(t) =
(
ψ1(t), ψ2(t), ψ3(t)

)
,

where
ψ1(t) =

n
4m

[
n−1
2n+1 cos[(2n+ 1)t] + n+1

2n−1 cos[(2n− 1)t]− 2 cos[t]
]
,

ψ2(t) =
n
4m

[
n−1
2n+1 sin[(2n+ 1)t] + n+1

2n−1 sin[(2n− 1)t]− 2 sin[t]
]
,

ψ3(t) = − n
4m2 cos[2nt]

is a slant helix with arc-length parameter s = sin(nt)
m , k(s) = 1, τ(s) = ms√

1−m2s2

and kg = m.

Figure 3: Slant helices with m = 1√
1−n2

and n = 1
3 ,

1
8 ,

10
11 .

Now onwards, we denote by Γ, Γ∗, Γt, Γb, Γ
∗
t , Γ

∗
b the geodesic curvature of the

principal image of the principal normal indicatrix of a Bertrand pair curve α, α∗

and their tangent indicatrix αt, α
∗
t and binormal indicatrix αb, α

∗
b , respectively.
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Proposition 2.6. Let α and α∗ be Bertrand pair curves satisfying (2.2), then

(14) Γ =
H ′

k∗(1 +H2)3/2
,

where H = τ∗

k∗ and H ′ = dH
ds∗ .

Proof. Suppose α and α∗ are homothetic. Using (2.5) in (2.13), we get

(15) Γ =
H ′

ϵ1k∗(1 + u′ − vk)(1 +H2)3/2
ds∗

ds
.

Using (2.7) in (15), we obtain (14).

Suppose α and α∗ are not homothetic. Using (2.10) in (2.13), we get

(16) Γ =
m1H

′k∗2

(w′ + vτ)
√
1 + h2(k∗2 + τ∗2)3/2

ds∗

ds
.

Using (2.12) in (16), we obtain (14). This completes the proof.

Proposition 2.7. Let α and α∗ be Bertrand pair curves satisfying (2.2). If α∗ and
α are homothetic, then

(17) Γ∗ =
f ′

k(1 + f2)3/2
.

If α∗ and α are not homothetic, then

(18) Γ∗ =
m3f

′

k(1 + f2)3/2
,

where f = τ
k .

Proof. Using (2.13), we have

(19) Γ∗ =
(τ∗
k∗

)′ k∗2

(k∗2 + τ∗2)3/2
.

Suppose α∗ and α are homothetic. Using (2.6) in (19), we get

(20) Γ∗ =
(1 + u′ − vk)f ′

ϵ1k(1 + f2)3/2
ds

ds∗
.

Using (2.7) in (20), we obtain (17).

Suppose α∗ and α are not homothetic. Using (2.11) in (19), we have

(21) Γ∗ =
m3f

′k2(w′ + vτ)
√
1 + h2

m1(k2 + τ2)3/2
ds

ds∗
.

Using (2.12) in (21), we obtain (18). Whereby proof is complete.
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3. Spherical Indicatrices of Homothetic Bertrand Pair Curves in Eu-
clidean 3-space

In this section, we study the tangent, normal, and binormal indicatrices of
Bertrand pair curves satisfying (2.2) in E3.

First of all, we study tangent indicatrices αt = T and α∗
t = T ∗. We have:

Theorem 3.1. Let α and α∗ be homothetic Bertrand pair curves satisfying (2.2),
then the tangent indicatrices αt and α∗

t of Bertrand pair curves α and α∗ are also
homothetic. Also, we have,

(3.1) Tt = ϵ1T
∗
t , Nt = ϵ1N

∗
t , Bt = ϵ1B

∗
t ,

(3.2)

{
Tt = ϵ1N

∗, Nt =
ϵ1√

1+H2
(−T ∗ +HB∗), Bt =

ϵ1√
1+H2

(B∗ +HT ∗),

kt = k∗t =
√
1 +H2, τt = τ∗t = H′

k∗(1+H2) ,
dst
ds∗ =

ds∗t
ds∗ = k∗,

where (Tt, Nt, Bt) and (T ∗
t , N

∗
t , B

∗
t ) the Frenet frames, kt, k

∗
t , τt, τ

∗
t and st, s

∗
t are

the curvatures, torsions and arc-lengths of αt and α
∗
t , respectively.

Proof. The Frenet formula for the tangent indicatrix αt is given by

(3.3) Tt
′ = ktNt, Nt

′ = −ktTt + τtBt, Bt
′ = −τtNt.

Since, the tangent indicatrix of α and α∗ is given by αt = T and α∗
t = T ∗. Then

from (2.3), we have

(3.4) αt = ϵ1α
∗
t .

Differentiating (3.4) with respect to st and using (2.1) and (3.3), we obtain

(3.5) Tt = ϵ1T
∗
t

(ds∗t
dst

)
.

Taking the inner product of (3.5) with itself, we have

(3.6) Tt = ϵ1T
∗
t , dst = ds∗t .

From the first relation of (3.3) and using (3.6), we get

(3.7) kt = k∗t , Nt = ϵ1N
∗
t .

From the second relation of (3.3) and using (3.6) and (3.7), we get

(3.8) τt = τ∗t , Bt = ϵ1B
∗
t .

Using (3.6), (3.7) and (3.8), we obtain (3.1).
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Now, we will find the Frenet frame of αt. From (2.3), we have

(3.9) αt = ϵ1T
∗.

Differentiating (3.9) with respect to s∗ and using (2.1) and then taking inner
product with itself, we obtain

(3.10) Tt = ϵ1N
∗,

dst
ds∗

= k∗.

Differentiating (3.10) with respect to st and using (2.1) and first relation of
(3.3), we obtain

(3.11) Nt =
ϵ1√

1 +H2
(−T ∗ +HB∗), kt =

√
1 +H2.

Differentiating Nt in (3.11) with respect to st and using (2.1) and (3.10), we
obtain

(3.12)
dNt

dst
=
ϵ1(−k∗(1 +H2)2N∗) +H ′(B∗ +HT ∗)

k∗(1 +H2)3/2
.

Using (3.10), (3.11) and (3.12) in second relation of (3.3), we get

(3.13) Bt =
ϵ1√

1 +H2
(B∗ +HT ∗), τt =

H ′

k∗(1 +H2)
.

Using (3.10), (3.11) and (3.13). We obtain (3.2). This completes the proof of
the Theorem.

Next, we study normal indicatrices αn = N and α∗
n = N∗. We have:

Theorem 3.2. Let α and α∗ be homothetic Bertrand pair curves satisfying (2.2),
then normal indicatrices αn and α∗

n of α and α∗ are also homothetic. Also we have,

(3.14) Tn = ϵ1T
∗
n , Nn = ϵ1N

∗
n, Bn = ϵ1B

∗
n,

(3.15)



Tn = ϵ1√
1+H2

(−T ∗ +HB∗),

Nn = ϵ1
ρ
√
1+H2

(HH ′T ∗ − k∗(1 +H2)2N∗ +H ′B∗),

Bn =
ϵ1

(
(
√
1+H2P−ρ)T∗+

√
1+H2QN∗+(

√
1+H2R+ρH)B∗

)
√

(
√
1+H2P−ρ)2+(1+H2)Q2+(

√
1+H2R+ρH)2

,

τn = τ∗n =

√
(
√
1+H2P−ρ)2+(1+H2)Q2+(

√
1+H2R+ρH)2

k∗(1+H2)2 ,

kn = k∗n = ρ
k∗(1+H2)3/2

, dsn
ds∗ =

ds∗n
ds∗ = k∗

√
1 +H2,
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where

(3.16)


ρ =

√
H ′2 + (1 +H2)3k∗2,

P = −ρ′HH ′(1 +H2) + ρHH ′′(1 +H2) + ρ3,

Q = ρ′k∗(1 +H2)3 − k∗
′
ρ(1 +H2)3 − 3ρHH ′k∗(1 +H2)2,

R = −H ′ρ′(1 +H2)−HH ′2ρ+H ′′ρ(1 +H2)− k∗τ∗ρ(1 +H2)3,

(Tn, Nn, Bn) and (T ∗
n , N

∗
n, B

∗
n) the Frenet frames, kn, k

∗
n, τn, τ

∗
n, sn, s

∗
n are the

curvatures, torsions and arc-lengths of αn and α∗
n, respectively.

Proof. The Frenet formula for the normal indicatrix αn is given by

(3.17) Tn
′ = knNn, Nn

′ = −knTn + τnBn, Bn
′ = −τnNn,

Since, the normal indicatrix of α and α∗ is given by αn = N and α∗
n = N∗.

Then from (2.3), we have

(3.18) αn = ϵ1α
∗
n.

Differentiating (3.18) with respect to sn and using (2.1) and (3.17), we obtain

(3.19) Tn = ϵ1T
∗
n

(ds∗n
dsn

)
.

Taking the inner product of (3.5) with itself, we have

(3.20) Tn = ϵ1T
∗
n , dsn = ds∗n.

From the first relation of (3.17) and using (3.20), we get

(3.21) kn = k∗n, Nn = ϵ1N
∗
n.

From the second relation of (3.17) and using (3.20) and (3.21), we get

(3.22) τn = τ∗n, Bn = ϵ1B
∗
n.

Using (3.20), (3.21) and (3.22), we obtain (3.14).

Now, we will find the Frenet frame of αn. From (2.3), we have

(3.23) αn = ϵ1N
∗.

Differentiating (3.23) with respect to s∗ and using (2.1) and then taking inner
product with itself, we have

(3.24) Tn =
ϵ1√

1 +H2
(−T ∗ +HB∗),

dsn
ds∗

= k∗
√
1 +H2.
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Differentiating (3.24) with respect to sn and using (2.1) and first relation of
(3.17), we get

(3.25) Nn =
ϵ1

ρ
√
1 +H2

(HH ′T ∗ − k∗(1+H2)2N∗ +H ′B∗), kn =
ρ

k∗(1 +H2)3/2
.

Differentiating Nn in (3.25) with respect to sn and using (2.1) and (3.24), we
have

(3.26)
dNn

dsn
=
ϵ1(PT

∗ +QN∗ +RB∗)

ρk∗(1 +H2)3/2
.

Using (3.24), (3.25) and (3.26) in second relation of (3.17), we get

(3.27)

τn =

√
(
√
1+H2P−ρ)2+(1+H2)Q2+(

√
1+H2R+ρH)2

k∗(1+H2)2 ,

Bn = ϵ1((
√
1+H2P−ρ)T∗+

√
1+H2QN∗+(

√
1+H2R+ρH)B∗)√

(
√
1+H2P−ρ)2+(1+H2)Q2+(

√
1+H2R+ρH)2

.

From (3.24), (3.25) and (3.27), we obtain (3.15). Whereby proof is complete.

Now, we study binormal indicatrices αb = B and α∗
b = B∗. We have:

Theorem 3.3. Let α and α∗ be homothetic Bertrand pair curves satisfying (2.2),
then the binormal indicatrices αb and α∗

b of Bertrand pair curves α and α∗ are also
homothetic. Also we have,

(3.28) Tb = ϵ1T
∗
b , Nb = ϵ1N

∗
b , Bb = ϵ1B

∗
b ,

(3.29)

{
Tb = −ϵ1N∗, Nb =

ϵ1√
1+H2

(T ∗ −HB∗), Bb = − ϵ1√
1+H2

(B∗ +HT ∗),

kb = k∗b =
√
1+H2

H , τb = τ∗b = H′

τ∗(1+H2) ,
dsb
ds∗ =

ds∗b
ds∗ = τ∗,

where (Tb, Nb, Bb) and (T ∗
b , N

∗
b , B

∗
b ) the Frenet frames, kb, k

∗
b , τb, τ

∗
b and sb, s

∗
b

are the curvatures, torsions and arc-length of αb and α∗
b , respectively.

Proof. The Frenet formula for the binormal indicatrix αb is given by

(3.30) Tb
′ = kbNb, Nb

′ = −kbTb + τbBb, Bb
′ = −τbNb,

Since, the binormal indicatrix of α and α∗ is given by αb = B and α∗
b = B∗.

Then from (2.3), we have

(3.31) αb = ϵ1α
∗
b .

Differentiating (3.31) with respect to sb and using (2.1) and (3.30), we obtain

(3.32) Tb = ϵ1T
∗
b

(ds∗b
dsb

)
.
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Taking inner product of (3.32) with itself, we have

(3.33) Tb = ϵ1T
∗
b , dsb = ds∗b .

From the first relation of (3.30) and using (3.33), we get

(3.34) kb = k∗b , Nb = ϵ1N
∗
b .

From the second relation of (3.30) and using (3.33) and (3.34), we get

(3.35) τb = τ∗b , Bb = ϵ1B
∗
b .

Using (3.33), (3.34) and (3.35), we obtain (3.28).

Now, we will find the Frenet frame of αb. From (2.3), we have

(3.36) αb = ϵ1B
∗,

Differentiating (3.36) with respect to s∗ and using (2.1) and then taking inner
product with itself, we have

(3.37) Tb = −ϵ1N∗,
dsb
ds∗

= τ∗.

Differentiating (3.37) with respect to sb and using (2.1) and first relation of
(3.30), we obtain

(3.38) Nb =
ϵ1√

1 +H2
(T ∗ −HB∗), kb =

√
1 +H2

H
.

Differentiating Nb in (3.38) with respect to sb and and using (2.1) and (3.37),
we obtain

(3.39)
dNb

dsb
=
ϵ1(k

∗(1 +H2)2N∗ −H ′(B∗ +HT ∗))

τ∗(1 +H2)3/2
.

Using (3.37), (3.38) and (3.39) in second relation of (3.30), we get

(3.40) Bb = − ϵ1√
1 +H2

(B∗ +HT ∗), τb =
H ′

τ∗(1 +H2)
,

Using (3.37), (3.38) and (3.40). We obtain (3.29). Thus, proof is complete.
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4. Spherical Indicatrices of Non-homothetic Bertrand Pair Curves in
Euclidean 3-space

In this section, we study the tangent, normal, and binormal indicatrices of a
non-homothetic Bertrand pair curves satisfying (2.2) in E3.

Now, we study tangent indicatrices of non-homothetic Bertrand pair curves αt = T
and α∗

t = T ∗. We have:

Theorem 4.1. Let α and α∗ be non-homothetic Bertrand pair curves satisfying
(2.2) with their tangent indicatrices αt and α

∗
t . Then

(4.1)


Tt = m1m2m3N

∗, Nt =
m1m2m3√

1+H2
(−T ∗ +HB∗),

Bt = m1m2m3√
1+H2

(B∗ +HT ∗), st =
∫

1√
h2+1

(m2m3hk
∗ − τ∗)ds∗,

kt = k∗√1+H2
√
1+h2

(m2m3hk∗−τ∗) , τt =
H′√1+h2

(1+H2)(m2m3hk∗−τ∗) ,

(4.2)

T
∗
t = m1N,N

∗
t = m1√

1+f2
(−T + fB), B∗

t = m1√
1+f2

(B + fT ),

k∗t =
√
1+h2

√
1+f2

(h−f) , τ∗t = f ′√1+h2

(1+f2)k(h−f) , s
∗
t =

∫
1√

h2+1
k(h− f)ds,

Proof. From (2.8), we have

(4.3) αt =
m1m2m3√

1 + h2
(m2m3hT

∗ −B∗).

Differentiating (4.3) with respect to s∗, using (2.1) and then taking inner prod-
uct with itslef, we have

(4.4) Tt = m1m2m3N
∗,

dst
ds∗

=
1√

h2 + 1
(m2m3hk

∗ − τ∗).

Differentiating (4.4) with respect to st and using (2.1) and first relation of (3.3),
we obtain

(4.5) Nt =
m1m2m3√
1 +H2

(−T ∗ +HB∗), kt =
k∗

√
1 +H2

√
1 + h2

(m2m3hk∗ − τ∗)
.

Differentiating Nt in (4.5) with respect to st and using (2.1) and (4.4), we obtain

(4.6)
dNt

dst
= m1m2m3

(
− (1 +H2)2k∗N∗ +H ′(B∗ +HT ∗)

)√
h2 + 1

(1 +H2)3/2(m2m3hk∗ − τ∗)
.

Using (4.4), (4.5) and (4.6) in second relation of (3.3), we get

(4.7) Bt =
m1m2m3√
1 +H2

(B∗ +HT ∗), τt =
H ′√1 + h2

(1 +H2)(m2m3hk∗ − τ∗)
.
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Using (4.4), (4.5) and (4.7). We obtain (4.1).

From (2.8), we have

(4.8) α∗
t =

m1√
1 + h2

(hT +B).

Differentiating (4.8) with respect to s and using (2.1) and then taking inner
product with itself, we have

(4.9) T ∗
t = m1N,

ds∗t
ds

=
1√

h2 + 1
(hk − τ).

Differentiating (4.9) with respect to s∗t and using (2.1) and first relation of (3.3),
we obtain

(4.10) N∗
t =

m1√
1 + f2

(−T + fB), k∗t =

√
1 + f2

√
1 + h2

(h− f)
.

Differentiating N∗
t in (4.10) with respect to s∗t and using (2.1) and (4.9), we

obtain

(4.11)
dN∗

t

ds∗t
= m1

(
− (1 + f2)2kN + f ′(B + fT )

)√
h2 + 1

k(1 + f2)3/2(hk − f)
.

Using (4.9), (4.10) and (4.11) in second relation of (3.3), we get

(4.12) B∗
t =

m1√
1 + f2

(B + fT ), τ∗t =
f ′
√
1 + h2

k(1 + f2)(h− f)
.

Using (4.9), (4.10)and (4.12), we obtain (4.2). Thus, the proof is complete.

Now, we study normal indicatrices of non-homothetic Bertrand pair curves αn =
N and α∗

n = N∗. We have:

Theorem 4.2. Let α and α∗ be non-homothetic Bertrand pair curves satisfying
(2.2) with their normal indicatrices αn and α∗

n. Then

(4.13)



Tn = m1m2√
1+H2

(−T ∗ +HB∗),

Nn = m1m2

ρ
√
1+H2

(HH ′T ∗ − k∗(1 +H2)2N∗ +H ′B∗),

Bn =
m1m2

(
(
√
1+H2P−ρ)T∗+

√
1+H2QN∗+(

√
1+H2R+ρH)B∗

)
√

(
√
1+H2P−ρ)2+(1+H2)Q2+(

√
1+H2R+ρH)2

,

τn =

√
(
√
1+H2P−ρ)2+(1+H2)Q2+(

√
1+H2R+ρH)2

k∗(1+H2)2 ,

kn = ρ
k∗(1+H2)3/2

, sn =
∫
k∗

√
1 +H2ds∗,
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(4.14)



T ∗
n = m1m2√

1+f2
(−T + fB), N∗

n = m1m2

ϕ
√

1+f2
(ff ′T − k(1 + f2)2N + f ′B),

B∗
n =

m1m2

(
(
√

1+f2U−ϕ)T+
√

1+f2V N+(
√

1+f2W+ϕf)B
)

√
(
√

1+f2U−ϕ)2+(1+f2)V 2+(
√

1+f2W+ϕf)2
,

τ∗n =

√
(
√

1+f2U−ϕ)2+(1+f2)V 2+(
√

1+f2W+ϕf)2

k(1+f2)2 ,

k∗n = ϕ
k(1+f2)3/2

, s∗n =
∫
k
√
1 + f2ds,

where,

(4.15)


ρ =

√
H ′2 + (1 +H2)3k∗2,

P = −ρ′HH ′(1 +H2) + ρHH ′′(1 +H2) + ρ3,

Q = ρ′k∗(1 +H2)3 − k∗
′
ρ(1 +H2)3 − 3ρHH ′k∗(1 +H2)2,

R = −H ′ρ′(1 +H2)−HH ′2ρ+H ′′ρ(1 +H2)− k∗τ∗ρ(1 +H2)3,

(4.16)


ϕ =

√
f ′2 + (1 + f2)3k2,

U = −ϕ′ff ′(1 + f2) + ϕff ′′(1 +H2) + ϕ3,

V = ϕ′k∗(1 + f2)3 − k′ϕ(1 + f2)3 − 3ϕff ′k(1 + f2)2,

W = −f ′ϕ′(1 + f2)− ff ′2ϕ+ f ′′ϕ(1 + f2)− kτϕ(1 + f2)3.

Proof. From (2.3), we have

(4.17) αn = m1m2N
∗.

Differentiating (4.17) with respect to s∗ and using (2.1) and then taking inner
product with itself, we have

(4.18) Tn =
m1m2√
1 +H2

(−T ∗ +HB∗),
dsn
ds∗

= k∗
√

1 +H2.

Differentiating (4.18) with respect to sn and using (2.1) and first relation of
(3.17), we get

(4.19) Nn =
m1m2

ρ
√
1 +H2

(HH ′T ∗ − k∗(1+H2)2N∗ +H ′B∗), kn =
ρ

k∗(1 +H2)3/2
.

Differentiating Nn in (4.19) with respect to sn and using (2.1) and (3.24), we
have

(4.20)
dNn

dsn
=
m1m2(PT

∗ +QN∗ +RB∗)

ρk∗(1 +H2)3/2
.
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Using (4.18), (4.19) and (4.20) in second relation of (3.17), we get

(4.21)

τn =

√
(
√
1+H2P−ρ)2+(1+H2)Q2+(

√
1+H2R+ρH)2

k∗(1+H2)2 ,

Bn = m1m2((
√
1+H2P−ρ)T∗+

√
1+H2QN∗+(

√
1+H2R+ρH)B∗)√

(
√
1+H2P−ρ)2+(1+H2)Q2+(

√
1+H2R+ρH)2

.

From (4.18), (4.19) and (4.21). We obtain (4.13).

From (2.3), we have

(4.22) α∗
n = ϵ1N.

Differentiating (4.22) with respect to s and using (2.1) and then taking inner
product with itself, we find

(4.23) T ∗
n =

ϵ1√
1 + f2

(−T + fB),
ds∗n
ds

= k
√

1 + f2.

Differentiating (4.23) with respect to s∗n and using (2.1) and first relation of
(3.17), we get

(4.24) N∗
n =

ϵ1

ϕ
√
1 + f2

(ff ′T ∗ − k(1 + f2)2N + f ′B), k∗n =
ϕ

k(1 + f2)3/2
.

Differentiating N∗
n in (4.24) with respect to s∗n and using (2.1) and (4.23), we

have

(4.25)
dN∗

n

ds∗n
=
ϵ1UT + V N +WB

ϕk(1 + f2)3/2
.

Using (4.23), (4.24) and (4.25) in second relation of (3.17), we find

(4.26)


τ∗n =

√
(
√

1+f2U−ϕ)2+(1+f2)V 2+(
√

1+f2W+ϕf)2

k(1+f2)2 ,

B∗
n =

ϵ1

(
(
√

1+f2U−ϕ)T+
√

1+f2V N+(
√

1+f2W+ϕf)B
)

√
(
√

1+f2U−ϕ)2+(1+f2)V 2+(
√

1+f2W+ϕf)2
.

From (4.23), (4.24) and (4.26), we obtain (4.14). Whereby proof is complete.

Now, we study binormal indicatrices of non-homothetic Bertrand pair curves
αb = B and α∗

b = B∗. We have:

Theorem 4.3. Let α and α∗ be non-homothetic Bertrand pair curves satisfying
(2.2) with their binormal indicatrices αb and α∗

b . Then

(4.27)


Tb = m1m2m3N

∗, Nb =
m1m2m3√

1+H2
(−T ∗ +HB∗),

Bb = m1m2m3√
1+H2

(B∗ +HT ∗), sb =
∫

1√
h2+1

(m2m3k
∗ − hτ∗)ds∗,

kb = k∗√1+H2
√
1+h2

(m2m3k∗−hτ∗) , τb =
H′√1+h2

(1+H2)(m2m3k∗−hτ∗) ,
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(4.28)


T ∗
b = −m1m2m3N,N

∗
b = m1m2m3√

1+f2
(T − fB),

B∗
b = −m1m2m3√

1+f2
(B + fT ), s∗b =

∫ k(1+hf)√
h2+1

ds,

k∗b =

√
1+f2

√
1+h2

(1+hf) , τ∗b = f ′√1+h2

k(1+hf)(1+f2) .

Proof. From (2.8), we have

(4.29) αb =
m1m2m3√

1 + h2
(m2m3T

∗ + hB∗).

Differentiating (4.29) with respect to s∗ and using (2.1) and then taking inner
product with itself, we have

(4.30) Tb = m1m2m3N
∗,

dsb
ds∗

=
1√

h2 + 1
(m2m3k

∗ − hτ∗).

Differentiating (4.30) with respect to sb and using (2.1) and first relation of
(3.30), we obtain

(4.31) Nb =
m1m2m3√
1 +H2

(−T ∗ +HB∗), kb =
k∗

√
1 +H2

√
1 + h2

(m2m3k∗ − hτ∗)
.

Differentiating Nb in (4.31) with respect to sb and using (2.1) and (4.30), we
obtain

(4.32)
dNb

dsb
= m1m2m3

√
1 + h2

(
− k∗(1 +H2)2N∗ +H ′(B∗ +HT ∗)

)
(1 +H2)3/2(m2m3k∗ − hτ∗)

.

Using (4.30), (4.31) and (4.32) in second relation of (3.30), we get

(4.33) Bb =
m1m2m3√
1 +H2

(B∗ +HT ∗), τb =
H ′√1 + h2

(1 +H2)(m2m3k∗ − hτ∗)
.

Using (4.30), (4.31) and (4.33). We obtain (4.27).

From (2.8), we have

(4.34) α∗
b =

m1m2m3√
1 + h2

(−T + hB).

Differentiating (4.34) with respect to s and using (2.1) and taking inner product
with itslef, we have

(4.35) T ∗
b = −m1m2m3N,

ds∗b
ds

=
1√

h2 + 1
(k + hτ).
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Differentiating (4.35) with respect to s∗b and using (2.1) and first relation of
(3.30), we obtain

(4.36) N∗
b =

m1m2m3√
1 + f2

(T − fB), k∗b =

√
1 + f2

√
1 + h2

(1 + hf)
.

Differentiating N∗
b in (4.36) with respect to s∗b and using (2.1) and (4.35), we

get

(4.37)
dN∗

b

ds∗b
= m1m2m3

√
1 + h2

(
k(1 + f2)2N − f ′(B + fT )

)
k(1 + hf)(1 + f2)3/2

.

Using (4.35), (4.36) and (4.37) in second relation of (3.30), we obtain

(4.38) B∗
b = −m1m2m3√

1 + f2
(B + fT ), τ∗b =

f ′
√
1 + h2

k(1 + f2)(1 + hf)
.

Using (4.35), (4.36) and (4.38), we obtain (4.28). This completes the proof of
the Theorem.

Next, using Proposition 2.6, Proposition 2.7, Theorem 3.1, and Theorem 3.3,
we have

Corollary 4.4. Let α and α∗ be homothetic Bertrand pair curves satisfying (2.2),
then

(4.39) Γ = Γ∗ =
τt
kt

=
τb
kb

=
τ∗t
k∗t

=
τ∗b
k∗b
.

Using Proposition 2.6, Proposition 2.7, Theorem 4.1, and Theorem 4.3, we have

Corollary 4.5. Let α and α∗ be non-homothetic Bertrand pair curves satisfying
(2.2), then

(4.40) Γ∗ = m3
τ∗t
k∗t

= m3
τ∗b
k∗b
,

(4.41) Γ =
τt
kt

=
τb
kb
.

Theorem 4.6. A non-helical and non-planar Bertrand pair curves satisfying (2.2)
is a slant helix if and only if their tangent indicatrix or binormal indicatrix is a
spherical helix.
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Proof. Let α be a slant helix. Therefore, from (4.41), we have

(4.42) Γ =
τt
kt

=
τb
kb

= constant.

Conversely, let the tangent indicatrix or binormal indicatrix of the Bertrand
curve be a spherical helix. Then from (4.39), we get Γ is constant. Hence, the proof
is complete.

The proof is similar to the Bertrand mate curve.

Proposition 4.7. The Γt, Γb, Γ
∗
t and Γ∗

b of a tangent indicatrices and binormal
indicatrices of Bertrand pair curves α and α∗ satisfying (2.2) are given by

(4.43) Γt = Γb =

(
1 +H2)3/2(H ′′k∗(1 +H2)− 3k∗HH ′2 −H ′k∗′(1 +H2)

)
(k∗2(1 +H2)3 +H ′2)3/2

,

(4.44) Γ∗
t = Γ∗

b =
(1 + f2)3/2

(
f ′′k(1 + f2)− 3kff ′

2 − f ′k′(1 + f2)
)(

k2(1 + f2)3 + f ′2
)3/2 ,

where H ′ = dH
ds∗ , H

′′ = d2H
ds∗2 , k

∗′
= dk∗

ds∗ , f
′ = df

ds , f
′′ = d2f

ds2 , k
′
= dk

ds .

Proof. Using (2.13), we have

(4.45) Γt =
( τt
kt

)′ k2t
(k2t + τ2t )

3/2
.

Using kt and τt from (3.2) or from (4.1) in (4.45), we obtain (4.43).

Now, again using (2.13), we have

(4.46) Γb =
( τb
kb

)′ k2b
(k2b + τ2b )

3/2
.

Using kb and τb from (3.29) or from (4.27) in (4.46), we obtain (4.43).

Using (2.13), we have

(4.47) Γ∗
t =

(τ∗t
k∗t

)′ k∗2t
(k∗2t + τ∗2t )3/2

.

Using k∗t and τ∗t from (3.2) or from (4.2) in (4.47), we obtain (4.44).

Now, again using (2.13), we have

(4.48) Γ∗
b =

(τ∗b
k∗b

)′ k∗2b
(k∗2b + τ∗2b )3/2

.

Using k∗b and τ∗b from (3.29) or from (4.27) in (4.48), we obtain (4.44). Thus,
proof is complete.
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Theorem 4.8. The spherical image of tangent and binormal indicatrices αt and
αb are spherical slant helix if and only if α is a slant helix.

Proof. From (14) and (4.43), we get the relation

Γt = Γb =
(1 +H2)Γ′

(k∗2(1 +H2)3 +H ′2)3/2
.(4.49)

Thus we have the proof of the Theorem.

5. Example

Example 5.1. Let us consider the curve in E3 given by

α(s) =
(−2√

3
sin

√
3s cos s+ sin s cos

√
3s,

2√
3
cos

√
3s cos s

+ sin s sin
√
3s,−

√
2√
3
cos s

)
,

with curvature k =
√
2 cos s and torsion τ =

√
2 sin s.

The Frenet frame of α is given by



T = 1√
3

(
−
√
3 cos s cos

√
3s− sin s sin

√
3s,−

√
3 sin

√
3s cos s+

sin s cos
√
3s,

√
2 sin s

)
,

N = 1√
3

(√
2 sin

√
3s,−

√
2 cos

√
3s, 1

)
,

B = 1√
3

(
− sin

√
3s cos s+

√
3 sin s cos

√
3s, cos s cos

√
3s+

√
3 sin s sin

√
3s,

√
2 cos s

)
.

Moreover, from (14), we find

(5.1) Γ =
−1√
2
.

Using (2.2), the Bertrand mate curve α∗ is given by

α∗ =
(−1√

3
sin

√
3s

(
2 cos s− s csc s

)
+ sin s cos

√
3s,

1√
3
cos

√
3s

(
2 cos s− s csc s

)
+ sin s sin

√
3s,

−
√
2√
3

(3
2
+ cos s+ s csc s

))
,

where u = −(s+ sin s), v= − 1√
2
and w = −(cos s+ s cot s).
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Computing the curvature and torsion of α∗, we get

k∗ =

√
2 sin3 s

s− cos s sin s
, τ∗ =

√
2 sin2 s cos s

s− cos s sin s
.

Further, the Frenet frame of α∗ is given by

T ∗ = 1√
3

(√
3 sin s cos

√
3s− sin

√
3s cos s,

√
3 sin s sin

√
3s+

cos
√
3s cos s,

√
2 cos s

)
,

N∗ = 1√
3

(
−
√
2 sin

√
3s,

√
2 cos

√
3s,−1

)
,

B∗ = 1√
3

(
− sin s sin

√
3s−

√
3 cos s cos

√
3s, sin s cos

√
3s−

√
3 sin

√
3s cos s,

√
2 sin s

)
.

Also from (18), we have

(5.1) Γ∗ =
1√
2
.

Now, the tangent indicatrix of Bertrand curve α is αt = T .
Using (4.1), we get the curvature and torsion of αt as follows:

(5.2) τt =
1√

2 cos s
, kt =

−1

cos s
.

Now, the binormal indicatrix of Bertrand curve α is αb = B.
Using (4.27), we obtain the curvature and torsion of αb as

(5.3) τb =
−1√
2 sin s

, kb =
1

sin s
.

From (5.1), (5.2) and (5.3), we have

(5.4)
τt
kt

=
τb
kb

= Γ.

Now, the tangent indicatrix of Bertrand mate curve α∗ is α∗
t = T ∗.

Using (4.2), we obtain the curvature and torsion of α∗
t as

(5.5) τ∗t =
−1√
2 sin s

, k∗t =
−1

sin s
.

Now, the binormal indicatrix of Bertrand mate curve α∗ is α∗
b = B∗.

Using (4.28) the curvature and torsion of α∗
b as follows:

(5.6) τ∗b =
1√

2 cos s
, k∗b =

1

cos s
.

From (5.1), (5.5) and (5.6), we find

(5.7)
τ∗t
k∗t

=
τ∗b
k∗b

= Γ∗.

This example also supports Theorem 4.6.
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Figure 4: Curve α Figure 5: Curveα∗

Figure 6: Curve αt

Figure 7: Curve αn Figure 8: Curve αb
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