• Title/Summary/Keyword: Curved duct

Search Result 91, Processing Time 0.024 seconds

Measurement of Inward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section (단순변형율 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정)

  • Kim, Dong-Chul;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.765-770
    • /
    • 2000
  • Hot-wire measurements are reported on the developing turbulent flows subject to plane rate of strain in a rotating $90^{\circ}$ dog bend. The cross-section of the bend varies from $100mm{\times}50mm$ rectangular shape at the bend inlet gradually to the $50mm{\times}100mm$ shape at the bend outlet with remaining a constant area. Data signals from the rotating test section are transmitted through a slip ring to the personal computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynolds stress components were calculated from the equations which correlate the fluctuating and mean voltage values measured with rotating a slant type hot-wire into 6 orientations. The effects of Coriolis and centrifugal forces on the mean motions and turbulence structures are investigated with respect to rotational speed.

  • PDF

A Numerical Study on the Effect of Battery-pack Shape of Electric Vehicle on the Forced Convection Around Battery Cells (전기자동차 배터리 팩 형상이 배터리 셀 주위의 강제대류에 미치는 영향에 대한 수치해석)

  • Kim, Kyo Hyeon;Kim, Tae Wan;Woo, Man Gyeong;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, the effect of battery-package shape of electric vehicle on the forced convection around a group of battery cells has been numerically investigated. Simulations for the two package shapes with straight/curved ducts have been conducted to examine the two design factors; the maximum temperature and the temperature deviation of a group of cells which influence the cell durability. The simulation of the conjugate heat transfer has been simplified by employing an equivalent thermal conductivity of cell that consists of various materials. It has been found that the maximum temperature and the temperature deviation of curved duct were lower than those of straight duct. Velocity fields have also been examined to describe the temperature distribution of a group of cells and the position of maximum temperature was found to be related to the dead zone of flow field.

  • PDF

Flow Characteristics of Turbulent Oscillatory Flows in the Exit Region Connected to $180^{\circ}$Curved Duct ($180^{\circ}$ 곡관덕트에 연결된 출구 영역에서 난류 진동유동의 유동특성)

  • 김대욱;손현철;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.817-824
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flows in the exit region connected to the square-sectional $180^{\circ}$curved duct was investigated experimentally. The experimental study for air flows was conducted to measure velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(L.D.V) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from the experimentation were summarized as follows : The critical Reynolds number for a change from transitional oscillatory flow to turbulent oscillatory flow was about 75,000 in the 90 region of dimensionless axial position (x/Dh) which was considered as a fully developed flow region. In the turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Shear stress distributions of turbulent oscillatory flow was gradually increased as the flow proceeds to downstream.

  • PDF

Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend (회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

Numerical calculation of Laminar flow in a Square Duct of 90° Bend (정사각형 단면을 갖는 90° 곡관의 층류유동 계산)

  • Kim H. T.;Kim J. J.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • A FA-FD hybrid method, developed for solving three-dimensional incompressible Navier-Stokes equations, is applied to calculate three-dimensional laminar flows through a square duct with a 90° bend. The method discretizes the convective terms in the primary flow direction with 3rd-order upwind finite-differences and the convective and diffusive terms in the transverse directions with the two-dimensional finite analytic method. The non-staggered grid system is used and the pressure-velocity coupling is achieved by a global iteration procedure based on the PISO algorithm. Detailed comparisons between the computed solutions and the available experimental data are given mainly for the velocity distributions at cross-sections in a 90° bend of a square duct with both fully developed and developing entry flows. Although the computational result shows generally a good agreement with the experimental data, there are some significant discrepancies underlining the necessity of more accurate numerical methods as well as reliable experimental data for their validation.

  • PDF

A Study on the Influence of Centrifugal Force for Flow Characteristics in Square-sectional Air Duct (정방형 공기덕트 내부의 유동특성에 원심력이 미치는 영향에 관한 연구)

  • Bong, Tae-Keun;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.455-460
    • /
    • 2012
  • In this paper, an experimental and numerical investigation of transition characteristics in a square-sectional curved duct flow under Centrifugal force is presented. The experimental study is carried out to measure axial velocity profiles by using Laser Doppler Velocimeter (LDV) system. Computational fluid dynamic (CFD) simulation was performed using the commercial CFD code FLUENT to investigate the transition characteristics. The flow development is found to depend upon Dean number and curvature ratio. The velocity profiles in center of the duct have lower value than those of the inner and outer walls because of the centrifugal forces.

Optimization of Flow Uniformity in an Electrostatic Precipitator (ESP) Duct (전기집진기 (ESP) 덕트 내부 유동 균일화를 위한 연구)

  • Junhyung, Hong;Minseung, Hwang;Joungho, Han;Woongchul, Choi;Jeongmo, Seong;Wontae, Hwang
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.86-93
    • /
    • 2022
  • An electrostatic precipitator (ESP) is an industrial post processing facility for high efficiency dust mitigation. Uniformity of the flow passing through the inlet duct leading into the main chamber is important for efficient reduction of dust. To examine flow uniformity, this study conducted a numerical analysis of the flow within a scale-down ESP inlet duct. Magnetic resonance velocimetry (MRV) results from a prior study were utilized to validate the Reynolds-averaged Navier-Stokes (RANS) numerical simulations. Both the experimental and computational results displayed a similar recirculation zone shape and normalized velocity profile near the duct outlet for the baseline geometry. To optimize the uniformity of the flow, the number of guide vanes was modified, and the guide vanes were partially extended straight upward. Design evaluation is done based on the outlet velocity distribution and mass flowrate balance between the two outlets. Simulation results indicate that the vane extension is critical for flow optimization in curved ESP ducts.

Measurement of Inward Turbulent Flows in a Rotating with Square Cross-Section $90^{\circ}$ Duct (회전하는 정사각단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정)

  • Kim, Dong-Chul;Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.627-632
    • /
    • 2000
  • Developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. The six orientation hot-wire technique was applied to measured the distributions of 3 mean velocities and 6 Reynolds stress components. Effects of Coriolis and centrifugal forces caused by the curvature and rotation of bend on the mean motion and turbulence structures were experimentally investigated Productive addition of Coriolis and centrifugal forces to the outward radial direction in the entrance region of bend increases the secondary flow intensity according to the rotational speeds. However, after 45 degree of bend, centrifugal force due to the rotation of bend may promote the break down of counter rotating vortex pair into multi-cellular pattern, thereby decreasing the production rate of turbulence energy and Reynolds stresses.

  • PDF

Stereoscopic PIV Measurement on Turbulent Flows in a Waterjet Intake Duct (스테레오 PIV를 이용한 워터젯 흡입덕트 내부의 난류유동측정)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Chun, Ho-Hwan;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.612-618
    • /
    • 2004
  • Stereoscopic PIV measurements were made in the wind tunnel with the actual size waterjet model. The main wind tunnel provides the vehicle velocity while the secondary wind tunnel adjusts the jet issuing velocity. Experiments were performed at the range of jet to vehicle velocity ratio (JVR), 3.75 to 8.0 and the Reynolds number of 220,000 based on the jet velocity and the hydraulic diameter of the waterjet intake duct. Wall pressure distributions were measured for various JVRs. Three dimensional velocity fields were obtained at the inlet and outlet of the intake duct. It is found that severe acceleration is occurred at the lip region while deceleration is noticeable at the ramp side. The detailed three dimensional velocity fields can be used as the accurate velocity input for the CFD simulation. It is interesting to note that there are many different types of vortices in the instantaneous velocity field. It can be considered that those vortices are generated by the corner of rectangular section of the intake and Gortler vortices due to the curved wall. However, typical secondary flow with a pair of counter rotating vortex pair is clearly seen in the ensemble averaged velocity field.

Removal of submandibular calculi by surgical method and hydraulic power with curved needle: a case report

  • Cho, Seong-Ho;Han, Ji-Deuk;Kim, Jung-Han;Lee, Shi-Hyun;Jo, Ji-Bong;Kim, Chul-Hoon;Kim, Bok-Joo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.3
    • /
    • pp.182-185
    • /
    • 2017
  • Sialolithiasis, the most common salivary gland pathology, is caused by calculi in the gland itself and its duct. While patients with small sialoliths can undergo conservative treatment, those with standard-size or larger sialoliths require sialolithotomy. In the present case study, we removed two sialoliths located beneath the mucosa in the posterior and anterior regions of Wharton's duct, respectively. For the posterior calculus, we performed sialolithotomy via an intra-oral approach; thereafter, the small anterior calculus near the duct orifice was removed by hydraulic power. This method has not previously been reported. There were no complications either during the operation or postoperatively, and the salivary function of the gland remained normal.