• Title/Summary/Keyword: Curvature Theory

Search Result 200, Processing Time 0.023 seconds

Research on the Propagation Mode Theory of Marine RFID in the Fresnel Zone (프레넬 영역에서의 해상용 RFID 전파모드 이론 고찰)

  • Yim Jeong-Bin;Ku Ja-Young;Lee Jae-Eung
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.65-69
    • /
    • 2005
  • The theoretical propagation modes of radio waves in the area of Line of Sight(LOS) within Fresnel zone are searched for the available detection ranges in a Marine RFID (Radio Frequency Identification). The structural LOS model to Earth's curvature is proposed and, the calculation method of horizontal distance in a specific radio frequency is also considered in this work As studying results, it is found that the height of antenna to cover the detection ranges and the influences of detection ranges by weather environments can be analyse with the theoretical methods.

  • PDF

Extraction of Feature Curves from Unorganized Points (연결 정보가 없는 포인트 데이타로부터 특징선 추출 알고리즘)

  • Kim, Soo-Kyun;Kim, Sun-Jung;Kim, Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.10
    • /
    • pp.768-776
    • /
    • 2006
  • Given an unstructured point set, we use an MLS (melting least-squares) approximation to estimate the local curvatures and their derivatives at a point by means of an approximation surface Then, we compute neighbor information using a Delaunay tessellation. feature points can then be detected as zero-crossings, and connected using curvature directions. Also this approach has a fast computation time than previous methods, which based on triangle meshes. We demonstrate our method on several large point-sampled models, rendered by point-splatting, on which the feature lines are rendered with line width determined from curvatures.

Theoretical Studies on Mechanism and Kinetics of the Hydrogen-Abstraction Reaction of CF3CH2CHO with OH Radicals

  • Ci, Cheng-Gang;Yu, Hong-Bo;Wan, Su-Qin;Liu, Jing-Yao;Sun, Chia-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1187-1194
    • /
    • 2011
  • The hydrogen abstraction reaction of $CF_3CH_2CHO$ + OH has been studied theoretically by dual-level direct dynamics method. Two stable conformers, trans- and cis-$CF_3CH_2CHO$, have been located, and there are four distinct OH hydrogen-abstraction channels from t-$CF_3CH_2CHO$ and two channels from c-$CF_3CH_2CHO$. The required potential energy surface information for the kinetic calculation was obtained at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level. The rate constants, which were calculated using improved canonical transitionstate theory with small-curvature tunneling correction (ICVT/SCT) were fitted by a four-parameter Arrhenius equation. It is shown that the reaction proceeds predominantly via the H-abstraction from the -CHO group over the temperature range 200-2000 K. The calculated rate constants were in good agreement with the experimental data between 263 and 358 K.

Vibration Analysis of 5-DOF Rotor System Supported by Two or More Ball Bearings Considering Centrifugal Force and Gyroscopic Moment of Ball (Waviness가 존재하며 볼의 원심력과 자이로스코픽 모멘트가 작용하는 볼베어링으로 지지된 5 자유도 회전계의 진동해석)

  • 정성원;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.297-303
    • /
    • 2001
  • This research presents an analytical model to characterize the ball bearing vibration due to the waviness in a rigid rotor supported by multi-row ball bearings considering centrifugal force and gyroscopic moment of ball. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. The waviness of ball and races is modeled by the superposition of sinusoidal function and it is introduced to position vectors of race curvature center to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. The accuracy of this research is validated by comparing with the results of the prior researches. It characterizes the vibration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing resulting from the waviness interaction.

  • PDF

Development of Design Formulas for Pipe Loops Used in Ships Considering the Structural Characteristics of Curved Portions (곡선부의 구조 특성을 고려한 선박용 파이프 루프 설계식 개발)

  • Park, Chi-Mo;Bae, Byoung-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.87-93
    • /
    • 2012
  • Many longitudinally-arranged pipes in ships are equipped with loops as a measure to reduce stresses caused by displacement loads conveyed from the hull girder bending and/or thermal loads of carried fluid of non-ambient temperature. But as the loops have some negative effects such as causing extra manufacturing cost and occupying extra space, the number and the dimensions of the loops need to be minimized. In the meanwhile, a design formula for pipe loops has been developed by modeling them as a spring element of which stresses and axial stiffness are calculated based on the beam theory. But as the beam theory turns out to be inappropriate to deal with the complex structural behavior in the curved corner portion of the loop, this paper aims at improving the previously developed design formula by adopting correction factors which can allow for the gap between the results of beam theory and a more accurate analysis. This paper adopts a finite element analysis with two-dimensional shell elements with some validation work for it. The paper ends with a sample application of the proposed formulas showing their accuracy and efficiency.

Frequency analysis of deep curved nonlocal FG nanobeam via DTM

  • S. A. H. Hosseini;O. Rahmani
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.603-614
    • /
    • 2023
  • In this paper, frequency analysis of curved functionally graded (FG) nanobeam by consideration of deepness effect has been studied. Differential transform method (DTM) has been used to obtain frequency responses. The nonlocal theory of Eringen has been applied to consider nanoscales. Material properties are supposed to vary in radial direction according to power-law distribution. Differential equations and related boundary conditions have been derived using Hamilton's principle. Finally, by consideration of nonlocal theory, the governing equations have been derived. Natural frequencies have been obtained using semi analytical method (DTM) for different boundary conditions. In order to study the effect of deepness, the deepness term is considered in strain field. The effects of the gradient index, radius of curvature, the aspect ratio, the nonlocal parameter and interaction of aforementioned parameters on frequency value for different boundary conditions such as clamped-clamped (C-C), clamped-hinged (C-H), and clamped-free (C-F) have been investigated. In addition, the obtained results are compared with the results in previous literature in order to validate present study, a good agreement was observed in the present results.

An Effect of Neck Curvature and Neck Muscles on Pitch Control (경부 굴곡변화 및 경부근이 pitch 조절에 미치는 영향)

  • 홍기환;김영중;정경호;김영기
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.5 no.1
    • /
    • pp.11-21
    • /
    • 1994
  • The vocal pitch is controlled by the tension, mass, and length of the vocal fold. It is well known that cricothyroid approximation raises the vocal pitch by simulating the contraction of the cricothyroid muscle, and there were so many reports that have noted a relationship between cricothyroid distance and pitch control, but there does not seem to be any single generally accepted theory to account for this connection. It is generally known that the strap muscles are active during low and falling Fo, and the suprahyoid muscles are active during high and raising Fo. These findings can be related to a general picture of the motion of the larynx during changes in Fo, the cricothyroid joint would tend to lengthen the vocal folds, as the larynx moves up and forward, and relax them as it moves back and down. In this study, we suggest that the relationship between anterior cricothyroid distance and fundamental frequency of the larynx was so complex according to the level of larynx and vertebral curvature. The higher the level of larynx, the wider the cricothyoid distance, but there is more greater fundamental frequency even though more wide cricothyroid distance. This phono-menon seems to be due to the multifactors, especially the vertical tension of the conus elasticus or the change of cricothyroid articulation. It is generally known that the crocothyoid and vocal is muscles are very closely related to pitch elevation, but sternohyoid muscle seems to be more closely related to pitch lowering. By this electromyographic studies, the sternohyoid muscle have dual activity to pitch control, increased activity during the low fundamental frequency and falling pitch, but also increased activity during the higher fundamental frequency and raising pitch at least in this study.

  • PDF

Development of a New Simplified Algorithm for Residual Longitudinal Strength Prediction of Asymmetrically Damaged Ships (비대칭 손상 선박의 잔류 종강도 평가를 위한 간이 해석 알고리즘 개발)

  • Choung, Joon-Mo;Nam, Ji-Myung;Lee, Min-Seong;Jeon, Sang-Ik;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • This paper explains the basic theory and a new development of for the residual strength prediction program of the asymmetrically damaged ships, being capable of searching moment-curvature relations considering neutral axis mobility. It is noted that moment plane and neutral axis plane should be separately defined for asymmetric sections. The validity of the new program is verified by comparing moment-curvature curves of 1/3 scaled frigate model where the results from new algorithm well coincide with experimental and nonlinear FEA results for intact condition and with nonlinear FEA results for damaged condition. Applicability of new algorithm is also verified by applying VLCC model to the newly developed program. It is proved that reduction of residual strengths is visually presented using the new algorithm when damage specifications of ABS, DNV and IMO are applied. It is concluded that the new algorithm shows very good performance to produce moment-curvature relations with neutral axis mobility on the asymmetrically damaged ships. It is expected that the new program based on the developed algorithm can largely reduce design period of FE modeling and increase user conveniences.

A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate (화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구)

  • Kim, Kyung-Ho;Kim, Tae-Kwon;Park, Jeong;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Flame propagation velocity is the one ofmainmechanismof the stabilization of triple flame. To quantify the triple flame propagation velocity, Bilger presents the triple flame propagation velocity depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there was not presented any relation of these variables, triple flame propagation velocity, radius of flame curvature and scalar dissipation rate indirectly. In the present research, we have checked the results of numerical simulation with experiment and numerical analysis and verified the flame propagation velocity with a scalar dissipation rate proposed by Bilger through the numerical simulation. Also we have clarified that flame propagation velocity was depended on the radius of flame curvature and scalar dissipation rate.

Mesh Simplification Algorithm Using Differential Error Metric (미분 오차 척도를 이용한 메쉬 간략화 알고리즘)

  • 김수균;김선정;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.288-296
    • /
    • 2004
  • This paper proposes a new mesh simplification algorithm using differential error metric. Many simplification algorithms make use of a distance error metric, but it is hard to measure an accurate geometric error for the high-curvature region even though it has a small distance error measured in distance error metric. This paper proposes a new differential error metric that results in unifying a distance metric and its first and second order differentials, which become tangent vector and curvature metric. Since discrete surfaces may be considered as piecewise linear approximation of unknown smooth surfaces, theses differentials can be estimated and we can construct new concept of differential error metric for discrete surfaces with them. For our simplification algorithm based on iterative edge collapses, this differential error metric can assign the new vertex position maintaining the geometry of an original appearance. In this paper, we clearly show that our simplified results have better quality and smaller geometry error than others.