Extraction of Feature Curves from Unorganized Points

연결 정보가 없는 포인트 데이타로부터 특징선 추출 알고리즘

  • 김수균 (고려대학교 컴퓨터학과) ;
  • 김선정 (한림대학교 정보통신학부) ;
  • 김창헌 (고려대학교 컴퓨터학과)
  • Published : 2006.10.15

Abstract

Given an unstructured point set, we use an MLS (melting least-squares) approximation to estimate the local curvatures and their derivatives at a point by means of an approximation surface Then, we compute neighbor information using a Delaunay tessellation. feature points can then be detected as zero-crossings, and connected using curvature directions. Also this approach has a fast computation time than previous methods, which based on triangle meshes. We demonstrate our method on several large point-sampled models, rendered by point-splatting, on which the feature lines are rendered with line width determined from curvatures.

연결 정보가 없는 포인트 데이타가 주어졌을 때, 본 논문은 MLS(moving least-squares) 근사화 기법을 이용하여 포인트 데이타에 대해 근사화된 표면을 생성한다. 근사화된 표면에서의 각 포인트에 대해 지역적인 곡률과 곡률 미분 값을 측정 한 후, 딜러니 삼각화(Delaunay tessellation)를 통해 이웃간의 정보를 생성하게 되고, 연결된 포인트들 간의 제로-클로싱(zero-crossing)을 측정하여 특징 포인트들을 추출하고, 곡률 방향으로 추출 된 포인트들을 연결한다. 본 방법은 기존의 메쉬 데이타에서 특징 선을 찾는 방법과 비슷한 복잡도를 갖는다. 몇 개의 포인트-샘플 된 모델에 대해 특징 선 추출을 수행하며, 곡률의 크기에 따라 특징선의 두께를 조절하고 포인트-스플릿팅 방법에 의해 렌더링 한다.

Keywords

References

  1. H. Hoppe, T. DeRose, T. Dumchamp, J. McDonald, and W. Stuetzle. Surface reconstruction from unorganized points. In Proceedings of SIGGRAPH '92, pp. 71-78, 1992 https://doi.org/10.1145/133994.134011
  2. S.-J. Kim, H.-C. Cho, and C.-H. Kim. Differential rendering of unorganized points. In Proceedings of 5th Korea-Israel Binational Conference on Geometric Modeling and Computer Graphics '04, pp. 87-95, 2004
  3. A. Hubeli and M. Gross. Multiresolution feature extraction from unstructured meshes. In Proceedings of IEEE Visualization '01, pp. 287-294, 2001
  4. M. Desbrun, M. Meyer, P. Schroder, A. Barr, Discrete differential geometry operators for triangulated-manifolds, In Proceedings of VisMath '02
  5. O. Monga, N. Armende, and P. Montesionoss. Thin nets and crest lines: application to satellite data and medical images. In Proceedings of International Conference on Image Processing '95, 1995 https://doi.org/10.1109/ICIP.1995.537517
  6. O. Monga, S. Benayoun, and O. Faugeras. From partial derivatives of 3d density images to ridge lines. In Proceedings of CVPR '92, pp. 354-359, 1992
  7. X. Pennec, N. Ayache, and J. P. Thirion. Landmarkbased registration using features identified through differential geometry. Handbook of Medical Imaging, pp. 499-513, 2000
  8. D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive contours for conveying shape. ACM Transactions on Graphics, 22(3):848:855, 2003 https://doi.org/10.1145/882262.882354
  9. J. Goldfeather and V. Interrante. A novel cubic-order algorithm for approximating principal direction vectors. ACM Transaction on Graphics, 23(1):45-63, 2004 https://doi.org/10.1145/966131.966134
  10. D. L. Page, Y. Sun, A. Kschan, J. Paik, and M. Abidi, Normal vector voting: crease detection and curvature estimation on large, noisy meshes. Graphical Models, 64:199-229, 2002 https://doi.org/10.1006/gmod.2002.0574
  11. Y. Ohtake, A. G. Belyaev, and H.-P. Seidel ridge-valley lines on meshes via implicit surface fitting. ACM Transactions on Graphics, 23(3):609-612, Proc. SIGGRAPH '04 https://doi.org/10.1145/1015706.1015768
  12. S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. Fast and robust detection of crest lines on meshes. In Proc. ACM symposium on solid and physical modeling, pp. 227-232, 2005
  13. S. Gumhold, X. Wang, and R. MacLeod. Feature extraction from point clouds. In Proceedings of 10th Int. Meshing Roundtable '01, pp. 293-305, 2001
  14. M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction on point-sampled surfaces. In Proceedings of Eurographics '03, pp. 281-289, 2003 https://doi.org/10.1111/1467-8659.00675
  15. A. G. Belyaev, E. Anoshkina, Detection of surfaces creases in range data, Mathematics of surfaces
  16. A. G. Belyaev, A. A. Pasko, T. L. Kunii, ridges and ravines on implicit surfaces, In Proceedings of Computer Graphics International '98 (998) 530-535 https://doi.org/10.1109/CGI.1998.694306
  17. Alexa, M., Sehr, J.. Fleishman,S., Cohen-Or, D., Levin D., and Silva, C.T. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9, 1, pp.3-15, 2003 https://doi.org/10.1109/TVCG.2003.1175093
  18. D. Levin. Mesh-independent surface interpolation. Geometric Modeling for Scientific Visualization, pp. 37-50, 2004
  19. N. Amenta, M. Bern and M. Kamvysselis. A new Voronoi-based surface reconstruction algorithm. In Proceedings of SIGGRAPH '98, pp. 415-422, 1998 https://doi.org/10.1145/280814.280947
  20. N. Dyn, K. Hormann, S.-J. Kim, and D. Levin. Optimizing 3d triangulations using discrete curvature analysis. In Proceedings of Mathematical Methods for Curves and Surfaces '01, pp.135-146, 2001
  21. Y. Ohtake, A. G. Belyaev, and H.-P. Seidel. A multi scale approach to 3d scattered data interpolation with compactly supported basis functions. In Proceedings of Shape Modeling International '03, pp. 153-161, 2003 https://doi.org/10.1109/SMI.2003.1199611
  22. G. G. Gordon. Face recongnition from depth maps and surace curvature. In Proceedings of SPIE 1570. pp. 234-247, 1991 https://doi.org/10.1117/12.48428