• Title/Summary/Keyword: Current detection

Search Result 2,501, Processing Time 0.034 seconds

Investigation of Detectable Crack Length in a Bolt Hole Using Eddy Current Inspection (와전류탐상검사를 이용하여 탐지 가능한 볼트홀 내부 균열 길이 연구)

  • Lee, Dooyoul;Yang, Seongun;Park, Jongun;Baek, Seil;Kim, Soonkil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.729-736
    • /
    • 2017
  • In this study, the physics-based model and machine learning technique were used to conduct model-assisted probability of detection (MAPOD) experiments. The possibility of using in-service cracked parts was also investigated. Bolt hole shaped specimens with fatigue crack on the hole surface were inspected using eddy current inspection. Owing to MAPOD, the number of experimental factors decreased significantly. The uncertainty in the crack length measurement for in-service cracked parts was considered by the application of Monte Carlo simulation.

Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography (열유도 장치와 적외선 열화상을 이용한 철근부식탐지 비파괴 평가기법)

  • Kwon, Seung Jun;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the embedded steel from concrete surface, which is integrated with an IR camera. Concrete samples with different cover depths are prepared. Each sample is embedded with a single rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enable heat induction from one surface and IR imaging from the other simultaneously. The impressed current (IC) method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during the entire heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded sample shows higher rates of heating and cooling than those of the non-corroded sample. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

Current status of food safety detection methods for Smart-HACCP system (스마트-해섭(Smart-HACCP) 적용을 위한 식품안전 검시기술 동향)

  • Lim, Min-Cheol;Woo, Min-Ah;Choi, Sung-Wook
    • Food Science and Industry
    • /
    • v.54 no.4
    • /
    • pp.293-300
    • /
    • 2021
  • Food safety accidents have been increasing by 2% over 5,000 cases every year since 2009. Most people know that the best method to prevent food safety accidents is a quick inspection, but there is a lack of inspection technology that can be used at the non-analytic level to food production and distribution sites. Among the recent on-site diagnostic technologies, the methods for testing gene-based food poisoning bacteria were introduced with the STA technology, which can range from sample to detection. If food safety information can be generated without forgery by directly inspecting food hazard factors by remote, unmanned, not human, pollution sources can be managed by predicting risks more accurately from current big-data and artificial intelligence technology. Since this information processing can be used on smartphones using the current cloud technology, it is judged that it can be used for food safety to small food businesses or catering services.

LDO Regulator with Improved Transient Response Characteristics and Feedback Voltage Detection Structure (Feedback Voltage Detection 구조 및 향상된 과도응답 특성을 갖는 LDO regulator)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.313-318
    • /
    • 2022
  • The feedback voltage detection structure is proposed to alleviate overshoot and undershoot caused by the removal of the existing external output capacitor. Conventional LDO regulators suffer from overshoot and undershoot caused by imbalances in the power supply voltage. Therefore, the proposed LDO is designed to have a more improved transient response to form a new control path while maintaining only the feedback path of the conventional LDO regulator. A new control path detects overshoot and undershoot events in the output stage. Accordingly, the operation speed of the pass element is improved by charging and discharging the current of the gate node of the pass element. LDO regulators with feedback voltage sensing architecture operate over an input voltage range of 3.3V to 4.5V and have a load current of up to 200mA at an output voltage of 3V. According to the simulation result, when the load current is 200mA, it is 73mV under the undershoot condition and 61mV under the overshoot condition.

Real-time automated detection of construction noise sources based on convolutional neural networks

  • Jung, Seunghoon;Kang, Hyuna;Hong, Juwon;Hong, Taehoon;Lee, Minhyun;Kim, Jimin
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.455-462
    • /
    • 2020
  • Noise which is unwanted sound is a serious pollutant that can affect human health, as well as the working and living environment if exposed to humans. However, current noise management on the construction project is generally conducted after the noise exceeds the regulation standard, which increases the conflicts with inhabitants near the construction site and threats to the safety and productivity of construction workers. To overcome the limitations of the current noise management methods, the activities of construction equipment which is the main source of construction noise need to be managed throughout the construction period in real-time. Therefore, this paper proposed a framework for automatically detecting noise sources in construction sites in real-time based on convolutional neural networks (CNNs) according to the following four steps: (i) Step 1: Definition of the noise sources; (ii) Step 2: Data preparation; (iii) Step 3: Noise source classification using the audio CNN; and (iv) Step 4: Noise source detection using the visual CNN. The short-time Fourier transform (STFT) and temporal image processing are used to contain temporal features of the audio and visual data. In addition, the AlexNet and You Only Look Once v3 (YOLOv3) algorithms have been adopted to classify and detect the noise sources in real-time. As a result, the proposed framework is expected to immediately find construction activities as current noise sources on the video of the construction site. The proposed framework could be helpful for environmental construction managers to efficiently identify and control the noise by automatically detecting the noise sources among many activities carried out by various types of construction equipment. Thereby, not only conflicts between inhabitants and construction companies caused by construction noise can be prevented, but also the noise-related health risks and productivity degradation for construction workers and inhabitants near the construction site can be minimized.

  • PDF

Effect of Applied Voltage on the Reliability of Coating Flaw Detection of Pipe with Different Buried Depths

  • Lim, B.T.;Kim, M.G.;Kim, K.T.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.277-284
    • /
    • 2019
  • External corrosion control of buried pipe can be achieved by the combination of barrier coating and cathodic protection. Coating damage and deterioration can be induced by many reasons; damage during handling and laying, enhanced failure at low temperatures, failure during commissioning and operation, disbanding due to inadequate surface cleaning, rock penetration during installation and service etc. This work focused on the effect of survey conditions on the reliability of coating flaw detection of buried pipes. The effects of applied voltage and anode location on the detection reliability of coating flaw of buried pipe in soil with the resistivity of ca. 25.8 kΩ·cm were discussed. Higher applied voltage increased the detection reliability, regardless of buried depth, but deeper burial depth reduced the reliability. The location of the anode has influenced on the detection reliability. This behaviour may be induced by the variation of current distribution by the applied voltage and buried depth. From the relationship between the applied voltage and reliability, the needed detection potential to get a desire detection reliability can be calculated to get 100% detection reliability using the derived equation.

Development of a Deterioration Diagnostic Device for ZnO Arrester by Leakage Current Detection (누설전류 검출에 의한 ZnO 피뢰기의 열화진단장치 개발)

  • Kim, Jae-Chul;Lee, Bo-Ho;Oh, Jung-Hwan;Lee, Young-Gil;Moon, Sun-Ho;Kim, Young-Chun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.184-189
    • /
    • 1999
  • In this paper, we develope a diagnosis device for ZnO arrester by detecting the leakage current in service. To diagnose the deterioration of ZnO arrester, the device detects the total leakage current which flows between an arrester and ground, and analyzes the resistive current(third harmonic current) which is an indicator of deterioration of ZnO arrester. We use the optical cable which can transfer a detected data without a noise, also use a microprocessor for a data storage, processing, and trend analysis. Experiment are executed to verify its performance in laboratory and the results show that the diagnosis device exactly detects the total leakage current and the resistive current, so it can diagnose the deterioration of ZnO arrester. Also the leakage current of ZnO arrester is detected using the developed diagnostic device in field, these results are presented.

  • PDF

A Study on the Possibility of the Earthquake Detection based on Telluric Current Monitoring (지전류 모니터링 기반 지진 감지 가능성 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jun, Seokang;Chung, Hojoon
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.107-115
    • /
    • 2019
  • Recently, since earthquakes have happened frequently in Gyeongju and Pohang areas in Korea, the earthquake detection research gets lots of attention. Geophysical monitoring data have been changed during the earthquake activity because the huge amount of energy is accumulated. The change of telluric current can be predicted by both of piezoelectric and electrokinetic effects before or during the earthquake occurrence, and if the change value exceeds the conventional telluric current noise, we can measure changes in the electric field associated with earthquakes. In this study, we have self-developed and verified the system that can monitor the telluric current. In order to verify our telluric current monitoring system, we installed lines of 40 m (E-W direction) and 28 m (N-S direction) on the site in Pohang. The telluric currents were sampled at 1 kHz for about a month. We have compared and analyzed the data of earthquake signals and electrical noises based on the earthquakes that occurred during the monitoring period. We have monitored if there were significant signals related to the earthquake on measured time series data. Through this study, we will suggest the direction of continuous research in the future.

Operational Method of Superconducting Fault Current Limiter with Reduction Function of Asymmetric Fault Current (비대칭 고장전류 저감 기능을 갖는 초전도 한류기 동작 방안)

  • Kim, Chang-Hwan;Seo, Hun-Chul;Kim, Kyu-Ho;Kim, Chul-Hwan;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.56-62
    • /
    • 2014
  • When fault currents contain decaying DC offset, the peak value of the fault current in the first cycle of the fault period is higher than the fault current during the steady-state period. To reduce the asymmetric fault current, this paper proposes an operation scheme using the series connection of two hybrid type Superconducting Fault Current Limiters (SFCLs) : an auxiliary SFCL and a main SFCL. The proposed method calculates the fault angle by comparing the zero-crossing time with fault detection time. According to the fault angle calculated, an auxiliary SFCL operates to reduce an asymmetric fault current during half a cycle after fault occurrence. After this process, the fault current is limited by a main SFCL. To confirm the usefulness of the proposed method, case studies using Electro-Magnetic Transients Program (EMTP)/Alternative Transient Program (ATP) Draw are perfomed.

A Fault Detection and Location Algorithm Using a Time Constant for DC Railway Systems (시정수를 이용한 직류철도급전계통에서의 고장판단 및 고장점표정 알고리즘)

  • 양언필;강상희;권영진
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.563-570
    • /
    • 2003
  • When a fault occurs on railway feeders it is very important to detect the fault to protect trains and facilities. Because a DC railway system has low feeder voltage, The fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the load starting current. The load starting current increases step by step but the fault current increases at one time. So the type of $\Delta$I/ relay(50F) was developed using the different characteristics between the load starting current and the fault current. The load starting current increases step by step so the time constant of each step is much smaller than that of the fault current. First, to detect faults in DC railway systems, an algorithm using the time constant calculated by the method of least squares is presented in this paper. If a fault occurs on DC railway systems it is necessary to find a fault location to repair the faulted system as soon as possible. The second aim of the paper is to calculate the accurate fault location using Kirchhoff's voltage law.