• 제목/요약/키워드: Current Sensing Feedback

검색결과 40건 처리시간 0.021초

전류 감지 Feedback 기법을 사용한 고효율 CMOS DC-DC Boost 변환기의 설계 (Design of a High-Efficiency CMOS DC-DC Boost Converter Using a Current-Sensing Feedback Method)

  • 정경수;양희관;차상현;임진업;최중호
    • 대한전자공학회논문지SD
    • /
    • 제43권9호
    • /
    • pp.23-30
    • /
    • 2006
  • 본 논문은 전류 감지 feedback 기법을 사용한 고효율 CMOS DC-DC boost 변환기의 설계에 관한 것이다. 펄스-폭 변조 방식의 스위칭 동작을 위해 인덕터를 통해 흐르는 전류의 양을 감지하는 고해상도 전류 감지 회로를 설계하였다. 이를 통하여 외부 소자나 큰 면적을 차지하는 주파수 보상 회로 없이 안정적으로 동작하는 변환기 성능을 얻을 수 있다. 또한 외부 저항 열을 사용하여 다양한 입력/출력 전압 특성을 얻을 수 있다. 설계한 DC-DC 변환기는 thick gate oxide 옵션이 포함된 0.18-um CMOS 표준 공정으로 제작하였다. 부하 전류 200mA 이상에 대하여 3.3V의 출력을 얻는 변환기에서 최대 효율은 90% 이상, load regulation은 100mA의 변화에 대하여 1.15%의 특성을 나타낸다.

전류와 자속의 궤환에 의한 자기베어링 시스템의 센서가 없는 변위 제어 (Displacement-Sensorless Control of Magnetic Bearing System using Current and Magnetic Flux Feedback)

  • 이준호;강민수;정용운;이정석;이기서
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.339-345
    • /
    • 2000
  • This paper deals with the displacement estimation of magnetically suspended simple 1 DOF(degree of freedom) system without the displacement sensor. Inherently electro-magnet for control has two natural feedback loops. One is the transfer function which represents the dependance of the amount of the magnetic flux on the gap displace-ments. The other is the transfer function expressing the properties that the back electromotive force is derived from the time derivative of the magnetic flux. Through these two feedback loops, information about the gap length can be represented by the magnetic flux and the coil current. This means that the gap length can be detected from these two states variables of the electromagnet without a displacements sensor(self-sensing). The displacement can be estimated with the magnetic flux subtracted by the coil current. In this paper we use a balance beam in order to deal with the displacement sensorless estimation of the magnetic bearing system. For the stable estimation of the gap displacements by using the method of self-sensing simple PD controller is used. We first show the mathematical model of the balance beam, and then we show the effectiveness of the current and flux feedback for making stable estimation of the gap displacements for the balance beam. Simulation results show the effectiveness of the current and flux feedback for good estimation of the displacement without using displacement sensor.

  • PDF

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

유도전동기 자가 진단 및 상수 추정을 위한 고주파 전류 제어기 구현 (Implementation of High Frequency Current Controller for Self-Sensing Induction Motors)

  • 권영수;석줄기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.144-146
    • /
    • 2007
  • High frequency voltage signal injection have been widely used but they have some problems like over current protection. High frequency current signal injection and feedback control are more stable than voltage signal injection. In this paper, high frequency current controller for self-sensing and parameter estimation of induction motors is presented.

  • PDF

전류추정기에 의한 브러시리스 직류전동기의 상태변수 궤환제어기 설계 (Design of a State Feedback Controller with a Current Estimator in Brushless DC Motors)

  • 오태석;신윤수;김일환
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.589-595
    • /
    • 2007
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor CUlTent it is modeled by a neural network that is contigured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a state feedback controller to compensate the effects of disturbance has been designed. The controller is implemented by a 16-bit microprocessor and the effectiveness of the proposed control method is verified through experiments.

저전압 SRAM 의 고속동작을 위한 전류감지 증폭기 (A current sense amplifier for low-voltage and high-speed SRAM)

  • 박현욱;심상원;정연배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.727-730
    • /
    • 2005
  • In this paper, we propose a new current sense amplifier for low-voltage, high-speed SRAM. As a supply voltage is reduced, a sensing delay is increased owing to reduced cell read current. It causes a low-speed operation in SRAM. To overcome this problem, we present a new current sense amplifier which consists of the current-mirror type circuit with feedback structure. For demonstration, a 0.8-V, 256-Kb SRAM incorporating the proposed current sense amplifier has been designed with $0.18-{\mu}m$ CMOS technology. The simulation results show 15.6ns of the sensing delay reduction in comparison with a previous current sense amplifier and 11.5ns of the sensing delay reduction in comparison with a voltage sense amplifier.

  • PDF

Feedback Buffer 구조 및 향상된 Regulation 특성을 갖는 LDO regulator (LDO Regulator with Improved Regulation Characteristics and Feedback Voltage Buffer Structure)

  • 정준모;박태룡
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.462-467
    • /
    • 2022
  • 피드백 버퍼 구조는 오버슈트 및 언더슈트 현상 및 출력전압의 레귤레이션을 완화하기 위해 제안된다. 기존의 LDO 레귤레이터는 일정한 부하전류의 변화로 인해 발생하는 레귤레이션 전압 변화를 겪는다. 따라서 패스 트랜지스터의 게이트 단자의 전류를 충방전함으로써 패스 트랜지스터의 동작 속도가 향상된다. 피드백 버퍼 구조를 갖는 LDO 레귤레이터는 3.3~4.5V에서 동작하며 출력 전압은 3V이며, 최대 150mA의 부하 전류를 가집니다. 시뮬레이션 결과에 따라 부하전류가 150mA까지 일정하게 변화하였을 때 6.2mV의 레귤레이션 값을 확보하였다.

Maximum Current Estimation Method for the Backup of Current Sensor Faults

  • Kim, Jae-Yeon;Park, Si-Hyun;Suh, Young-Suk
    • Journal of information and communication convergence engineering
    • /
    • 제18권3호
    • /
    • pp.201-206
    • /
    • 2020
  • This paper presents a new method for controlling the current of lighting LEDs without current sensors. This method can be used as backup against LED current sensor faults. LED lighting requires a circuit with a constant current in order to maintain the same brightness when the ambient temperature changes. Therefore, we propose a new current estimation method to provide backup in case of current sensor faults based on the calculation of the inductor current. In the fabricated circuit, the average current changes from 144.03 mA to 155.97 mA when the ambient temperature changes from 0℃ to 60℃. The application of this study can enable the fabrication of a driving IC for LEDs in the form of a single chip without sensing resistors. This is expected to reduce the complexity of the peripheral circuit and enable precise feedback control.

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권6호
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.