• Title/Summary/Keyword: Current Limiting

Search Result 746, Processing Time 0.028 seconds

Analysis of Capacitance and Mobility of ZTO with Amorphous Structure (비정질구조의 ZTO 박막에서 커패시턴스와 이동도 분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.14-18
    • /
    • 2019
  • The conductivity of a semiconductor is primarily determined by the carriers. To achieve higher conductivity, the number of carriers should be high, and an energy trap level is created so that the carriers can cross the forbidden zone with low energy. Carriers have a crystalline binding structure, and interfacial mismatching tends to make them less conductive. In general, high-concentration doping is typically used to increase mobility. However, higher conductivity is also observed in non-orthogonal conjugation structures. In this study, the phenomena of higher conductivity and higher mobility were observed with space charge limiting current due to tunneling phenomena, which are different from trapping phenomena. In an atypical structure, the number of carriers is low, the resistance is high, and the on/off characteristics of capacitances are improved, thus increasing the mobility. ZTO thin film improved the on/off characteristics of capacitances after heat treating at $150^{\circ}C$. In charging and discharging tests, there was a time difference in the charge and discharging shapes, there was no distinction between n and p type, and the bonding structure was amorphous, such as in the depletion layer. The amorphous bonding structure can be seen as a potential barrier, which is also a source of space charge limiting current and causes conduction as a result of tunneling. Thus, increased mobility was observed in the non-structured configuration, and the conductivity increased despite the reduction of carriers.

The Effect of Additives on the High Current Density Copper Electroplating (고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Hur, Ki-Su;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • The current density in copper electroplating is directly related with the productivity and then to increase the productivity, the increase in current density is required. To obtain the high mass flow rate, rotating disk electrode(RDE) was employed. High rotational speed in RDE can increase the mass flow rate and then high speed electroplating was possible using RDE to control mass flow. Two types of cathode were used. One is RDE and another is rotating cylindrical electrode(RCE). A constant-current, constant-voltage and linear sweep voltammetry were applied to investigate current and voltage relationship. The maximum current density without evolution of hydrogen gas was increased with rotational speed. Over 400 rpm, maximum current density was higher than 1000 A/$m^2$. The diffusion coefficients of copper calculated from the slope of the plots are $5.5{\times}10^6\;cm^2\;s^{-1}$ at $25^{\circ}C$ and $10.5{\times}10^6\;cm^2\;s^{-1}$ at $62^{\circ}C$. The stable voltage without evolution of hydrogen gas was -0.05 V(vs Ag/AgCl). Additives were added to prevent dendritic growth on cathode deposits. The surface roughness was analyzed with UV-Vis Spectrophotometer. The reflectance of the copper surface over 600 nm was measured and was related with the surface roughness. As the surface roughness improved, the reflectance was also increased.

Economic burden and its related determinants of private education among pre-school children (미취학 아동의 사교육에 대한 경제적 부담감과 관련요인 분석)

  • Kang, Lee-Ju
    • Korean Journal of Human Ecology
    • /
    • v.16 no.2
    • /
    • pp.315-331
    • /
    • 2007
  • The purpose of this study is to examine current situations about and factors related to expenditures of private education among pre-school children and to provide policy implications useful for future pre-school children education. The subjects of the study were parents of pre-school children under seven years of age, who lived in Seoul and Incheon area. The survey was conducted using parent questionnaire. The major findings of the study are: First, 86.8% of parents of pre-school children use private education and the average expenditure on it was 154, 446 won. Second, major factors determining their private education expenditure are educational level of parents, parents' job characteristics, household income, and region. Third, the most important reason for using private education among parents is to improve and excel in academic performance of their children. Forth, the higher the parents' expected returns from private education are, the higher the expenditure level of private education is. Fitth, the results of the logistic regressions showed that parents' attitudes toward private education was the most important factor in determining household economic burden associated with private education. The odds were 5 times greater for the parent group with strong desire for private education than for the parent group without it and 1.2 times greater for the parent group with high-expected returns from private education than the parent group without it. In conclusion, systematic, universal educational policies need to be developed to provide and support all the parents with pre-school children, given that their current economic burden is substantial. By providing such support, we can help parents focus on public education. This study examining current situations about and determining factors related to private education expenditures among pre-school children collected data limiting only Seoul and Inchoen area, therefore, future studies need to include data collected nationwide for generalizability of the findings. As well, development of more elaborated survey instruments and analytical methods would advance our understanding in the field.

Calculation of Induced Current in the Human Body by Magnetic Field in the 100kHz~10MHz Resonant WPT Frequency Range and Analysis of EMF Guideline (공진형 무선전력전송 대역의 100kHz~10MHz 자기장에 의한 인체유도전류계산과 전자기장 인체보호기준 분석)

  • Shin, Hansu;Song, Hye-Jin;Byun, Jin-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.110-119
    • /
    • 2013
  • As the technologies such as middle-range resonant WPT (wireless power transfer) advance that utilizes medium and low-frequency magnetic field, the importance of safety of such magnetic field is growing. The research on the effect of electromagnetic field on the human body has been mainly done on the GHz range of mobile phones, or 50~60Hz range of electric power systems. However, there has been relatively few works on the 100kHz~10MHz range used in the resonant wireless power transfer. Since there is a difference in the limiting value of magnetic field between widely used ICNIRP EMF guideline and IEEE C95.1 standard, there can be possible confusion when establishing EMF (Electromagnetic Field) standard on the wireless power transfer device in the future. In this paper, the induced current in the human body, which is the basic restriction of the EMF guideline, is calculated using Quasi-static FDTD method when 3D high-resolution human model is exposed to the 100kHz~10MHz magnetic field. Using this result, the feasibility of the magnetic field reference level in the ICNIRP guideline is analyzed.

A study on the cause Analysis and solution of an overheated NGR of the Main Transformer (변압기 중성점 접지리액터 과열원인분석 및 해소방안에 관한 연구)

  • Park, Gil-Soo;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.262-267
    • /
    • 2011
  • In the power system, the transformer's neutral earth reactor line 1 grounding failure may occur. By limiting the magnitude of the failure grounding current flow, it will aid to reduce the failure of the transformer. Consequently, this also may avoid the failure of the disconnection of the industrial insulator line that cause by melting. Besides, utilizing the decreasing circuit breaker or others related equipment can use to avoid the possibility of explosion of the transformer. If the failure happen during the operation of the power system, a huge interference will definitely may occur. Therefore, by installing the DONGBUSAN S/S #3M.Tr neutral earth reactor among TOP and BOTTOM BRACE part in the power system, the causes of the rising temperature and reason of the over-current flow that cause by over-current can be analyze.

Application of Fault Current Limiter in 22.9kV KEPCO power distribution line (22.9kV 지중선로용 한류기 한전 실계통 시범적용)

  • Kim, Min Jee;Park, Kyungwon;Ahn, Kil-Young;Kim, Young-keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1034-1035
    • /
    • 2015
  • Watertight 25.8 kV/600 A/12.5 kA fault current limiters (FCLs) have successfully installed in five areas (Incheon, Seoul, Gyeong-gi, Daejeon, Suwon) on KEPCO power distribution line for the purpose of commercial demonstrations. The fault current limiting operation of this FCL, which includes functions of sensing, commutation, and reduction of fault currents, is perfectly completed within 1 cycle immediately after fault occurs. The performance of FCL was verified by short circuit test, impedance test, insulation test, temperature-rise test, and control test, etc at PT&T in LS industrial systems, which is the official certification institute in Korea. In 2013, and also the FCL field test was performed in order to test the protection coordination between conventional relays and FCL, on the 1.5 kA and 5.0 kA faults, which were made by connecting the Artificial Fault Generator (AFG) to the distribution line in test grid at KEPCO Power Testing Center. The next step of this project is to check the FCL conditions caused by real external environment, and acquire the various data from five regions installed with FCL. In this paper, we intend to explain the FCL specifications and performance characteristics, and check the expected effect by application of FCL to power distribution line based on the power system analysis of an application site.

  • PDF

The Role of MicroRNAs in Regulatory T Cells and in the Immune Response

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.11-41
    • /
    • 2011
  • The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Visualization and Electrical Response of Electroconvective Vortices on the Surface of Homo/Heterogeneous Ion Exchange Membranes (이온교환막의 균질/비균질 표면 형상에 따른 전기 와류 가시화 및 전기적 특성 분석)

  • Myeonghyeon Cho;Jinwoong Choi;Bumjoo Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.21-28
    • /
    • 2023
  • The electromembrane process, which has advantages such as scalability, sustainability, and eco-friendliness, is used in renewable energy fields such as fuel cells and reverse electrodialysis power generation. Most of the research to visualize the internal flow in the electromembrane process has mainly been conducted on heterogeneous ion exchange membranes, because of the non-uniform swelling characteristics of the homogeneous membrane. In this study, we successfully visualize the electro-convective vortices near the Nafion homogeneous membrane in PDMS-based microfluidic devices. To reinforce the mechanical rigidity and minimize the non-uniform swelling characteristics of the homogeneous membrane, a newly developed swelling supporter was additionally adapted to the Nafion membrane. Thus, a clear image of electroconvective vortices near the Nafion membrane could be obtained and visualized. As a result, we observed that the heterogeneous membrane has relatively stronger electroconvective vortices compared to the Nafion homogeneous membranes. Regarding electrical response, the Nafion membrane has a higher limiting current and less overlimiting current compared to the heterogeneous membrane. Based on our visualization, it is assumed that the heterogeneous membrane has more activated electroconvective vortices, which lower electrical resistance in the overlimiting current regime. We anticipate that this work can contribute to the fundamental understanding of the ion transport characteristics depending on the homogeneity of ion exchange membranes.

Development of class I surge protection device for the protection of offshore wind turbines from direct lightning (해상풍력발전기 직격뢰 보호용 1등급 바리스터 개발)

  • Geon Hui Lee;Jae Hyun Park;Kyung Jin Jung;Sung-Man Kang;Seung-Kyu Choi;Jeong Min Woo
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.50-56
    • /
    • 2023
  • With the abnormal weather phenomena caused by global warming, the frequency and intensity of lightning strikes are increasing, and lightning accidents are becoming one of the biggest causes of failures and accidents in offshore wind turbines. In order to secure generator operation reliability, effective and practical measures are needed to reduce lightning damage. Because offshore wind turbines are tall structures installed at sea, the possibility of direct lightning strikes is very high compared to other structures, and the role of surge protection devices to minimize damage to the electrical and electronic circuits inside the wind turbine is very important. In this study, a varistor, which is a key element for a class 1 surge protection device for direct lightning protection, was developed. The current density was improved by changing the varistor composition, and the distance between the electrode located on the varistor surface and the edge of the varistor was optimized through a simulation program to improve the fabrication process. Considering the combined effects of heat distribution, electric field distribution, and current density on the optimized varistor surface, silver electrodes were formed with a gap of 0.5 mm. The varistor developed in this study was confirmed to have an energy tolerance of 10/350 ㎲, 50kA, which is a representative direct lightning current waveform, and good protection characteristics with a limiting voltage of 2 kV or less.