• Title/Summary/Keyword: Curing effect

Search Result 1,199, Processing Time 0.026 seconds

Temperature History of the Wall Concrete Subjected to -10℃ depending on Heat Curing Method (-10℃ 조건에서의 보온양생방법 변화에 따른 벽체 콘크리트의 온도이력)

  • Han, Sang-Yoon;Son, Ho-Jung;Cheong, Sang-Hyun;Ahn, Sang-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.255-256
    • /
    • 2011
  • This study investigates the effect of a curing condition on the temperature history and strength development of concrete under -10℃. Combination of various curing methods was applied, i.e. a conventional form was combined with compressed insulation, heat panel and heat cable. Results showed that the concrete cured by a single use of a conventional form resulted in serious deterioration of early strength development. However, other concretes cured by the proposed curing methods maintained the temperature of the concretes between 5 and 20℃, and thus resulted in no frost damage.

  • PDF

Fast Switching of Vertically Aligned Liquid Crystals by Low-Temperature Curing of the Polymer Structure

  • Park, Byung Wok;Oh, Seung-Won;Kim, Jung-Wook;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.395-400
    • /
    • 2014
  • We proposed a method for fast turn-off switching of a vertically-aligned liquid crystal cell by low-temperature curing of the polymer structure. We confirmed that the turn-off times of the fabricated cells were reduced significantly as the curing temperature was lowered to $-20^{\circ}C$. We accounted for the effect of low-temperature curing on the turn-off time by using a mathematical model and by observing images obtained via scanning electron microscopy. We also confirmed that low-temperature curing is more effective in reducing the response time when the device is operated at a low temperature.

Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete (초기 재령 콘크리트의 종파 속도와 강도의 상관관계)

  • 이휘근;이광명;김동수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.

Effect of Water absorbing Curing Time on Compressive Strength of Ultra High Strength Cement Paste (포수양생 시간이 초고강도 시멘트 페이스트의 압축강도에 미치는 영향)

  • Jang, Jong-Min;Jang, Hyun-O;Choi, Hyun-Kuk;An, Dong-Hee;Kim, In-Soo;Lee, Han-Seun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.107-108
    • /
    • 2017
  • The purpose of this study is to derive the optimum water absorbing curing time. It was found that the cement paste compressive strength was increased with the water absorbing ratio up to 40%, but the compressive strength was slightly lower when the catch level was over 50%. It is considered that the superfluous water did not react and remained in the inside of the specimen, causing microcracks in the inside due to the high temperature curing, resulting in a decrease in strength. Therefore, it is considered that the optimum catcher curing time for improving the strength through catcher curing is when the catcher reaches 40%.

  • PDF

Curing Temperature of Concrete Using Bubble Sheet with Carbon-based Photothermal Materials (탄소계 광발열 소재 혼입 버블시트를 적용한 콘크리트의 양생온도 특성)

  • Lee, Seung-Min;Lee, Hyeon-Jik;Baek, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.45-46
    • /
    • 2023
  • This study examined the curing temperature of concrete with a photothermal insulation sheet to shorten the curing time of concrete as part of construction cost and period reduction. According to the experiment results, the heating performance effect is confirmed through the temperature difference between photothermal insulation sheet and bubble sheet. And it has a high curing temperature in the order of bubble sheet (photo heating material B) > bubble sheet (photo heating material A) > bubble sheet on same layers.

  • PDF

Effect of Precured EPDM on the Property of Magneto-rheological Elastomer Based on NR/EPDM Blend

  • Na, Bokgyun;Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • Magneto-rheological elastomers (MREs) are smart materials in which the inherent stiffness and damping properties can be changed by the influence of an external magnetic field. The magneto-rheological (MR) effect depends on the orientation characteristics of the dispersed magneto-responsible particles (MRPs) in the matrix. In this study, natural rubber (NR) and ethylene propylene diene rubber (EPDM) were blended and used as a matrix of an MRE. EPDM was pre-cured before blending with NR. The Mooney viscosity, curing characteristics, and mechanical properties were analyzed with various pre-curing conditions of EPDM and the NR/EPDM blend. The results show that excellent mechanical properties of the NR/EPDM blend-based MRE were obtained when the pre-curing time of EPDM was 60 min. The aging property of the NR-based MRE was improved by the introduction of pre-cured EPDM. Also, the anisotropic MRE showed a higher MR effect than that of the isotropic MRE.

Evaluation of Compressive Strength and Freeze-thaw Resistance Properties of Concrete using Superabsorbent Polymer (고 흡수성 폴리머를 혼입한 콘크리트의 압축 강도 및 동결융해 저항성 평가)

  • Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.86-94
    • /
    • 2020
  • When the Superabsorbent Polymer (SAP) is added into concrete, the slump decreases rapidly, deteriorating the workability, the internal curing effect can be obtained through the water absorption and discharge process, and the internal voids of the concrete are increased. In this study, the effects of internal curing and voids were evaluated by evaluating the compressive strength, freeze-thaw resistance, and chloride penetration resistance of SAP-adding concrete that secured workability using a water reducing agent. Also, the internal curing effect of SAP was evaluated by dividing the curing conditions of concrete into water curing and sealed curing. From the result, as the SAP adding ratio increased, the amount of water reducing agent increased, and as for the compressive strength, the SAP adding ratio of 1.5% showed the greatest compressive strength. In particular, in the case of sealed curing showed higher compressive strength than the water curing. It is considered that the compressive strength increased due to the reduction of the effective water-cement ratio and the internal curing effect. Adding 1.0~1.5% of SAP improved the freeze-thaw resistance similar to the case of adding the AE agent, and the addition of more than 1.0% of SAP improved the chloride penetration resistance. The optimal adding ratio of SAP is 1.5%, and the adding ratio of 2.0% or more adversely affects the compressive strength and freeze-thaw resistance.

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

Study on the Crack Control Effect of Moist Curing Equipment in Side Wall of Building (습윤양생 장치를 이용한 아파트 측벽 균열제어에 관한 연구)

  • Kim, Dae-Geon;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • In this study, moist curing equipment was used in the exist gang-form system. By achieving sufficient spray curing, the quality of the concrete was improved and the cracking occurred in building's side wall was decreased. The following results could be made as the conclusion. For the compressive strength, all zones showed the similar results. Comparing with the zone without using moist curing equipment, the zone used moist curing equipment showed higher rebound hardness results. For the cracking, the zone utilized moist curing equipment showed the cracking averaged as 6.6 m and the zone without using moist curing equipment showed the cracking averaged as 10.3m. The effectof reducing cracking by utilizing moist curing equipment is about 36 %. Using moist curing equipment is considered as a good solution to reduce the cracking in the structure. Considering all the factors analysed, using moist curing equipment improved the quality of the concrete and decreased the cracking. When this equipment was used in the construction site, it is expected that the construction periodcan be shrunk and the ratio of defect caused by drying shrinkage can be decreased. In this research conditions, The 0.3mm sized moist curing equipment provided the most desirable results on concrete quality and preventing cracking.