• 제목/요약/키워드: Cu-to-Cu direct bonding

검색결과 31건 처리시간 0.023초

Cu 비아를 이용한 MEMS 센서의 스택 패키지용 Interconnection 공정 (Interconnection Processes Using Cu Vias for MEMS Sensor Packages)

  • 박선희;오태성;엄용성;문종태
    • 마이크로전자및패키징학회지
    • /
    • 제14권4호
    • /
    • pp.63-69
    • /
    • 2007
  • Cu 비아를 이용한 MEMS 센서의 스택 패키지용 interconnection 공정을 연구하였다. Ag 페이스트 막을 유리기판에 형성하고 관통 비아 홀이 형성된 Si 기판을 접착시켜 Ag 페이스트 막을 Cu 비아 형성용 전기도금 씨앗층으로 사용하였다. Ag 전기도금 씨앗층에 직류전류 모드로 $20mA/cm^2$$30mA/cm^2$의 전류밀도를 인가하여 Cu 비아 filling을 함으로써 직경 $200{\mu}m$, 깊이 $350{\mu}m$인 도금결함이 없는 Cu 비아를 형성하는 것이 가능하였다. Cu 비아가 형성된 Si 기판에 Ti/Cu/Ti metallization 및 배선라인 형성공정, Au 패드 도금공정, Sn 솔더범프 전기도금 및 리플로우 공정을 순차적으로 진행함으로써 Cu 비아를 이용한 MEMS 센서의 스택 패키지용 interconnection 공정을 이룰 수 있었다.

  • PDF

진공관형 태양열 집열기의 구리-유리 직접 접합 기술 (Technique of Direct Copper to Glass Seal in an Evacuated Tube Solar Collector)

  • 김철영;임형봉;조남권;곽희열
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.544-551
    • /
    • 2006
  • The sealing technique between a glass tube and a copper heat pipe in an evacuated tube solar collector is studied. In this study two different sealing techniques, such as flame method and furnace firing, are examined. After the sealing of a copper to a glass, the oxidation state of the copper and its bonding morphology were examined by SEM and XRD. Its oxidation was retarded by coating of borate solution on the copper, and $Cu_2O(cuprite)$ turned into CuO(tenorite) with increase in a firing temperature and firing time. Porous structure was found in the oxide layer when CuO formed. The best sealing morphology was observed when the thickness of the oxidation layer was less than $20{\mu}m$. The sealing technique performed in a furnace was promising and the satisfactory result was obtained when the sample was fired at $950^{\circ}C$ for 5 min under $N_2$ atmosphere. Annealing procedure is recommended to remove the stress left at the bonding zone.

파워모듈의 TLP 접합 및 와이어 본딩 (TLP and Wire Bonding for Power Module)

  • 강혜준;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.7-13
    • /
    • 2019
  • Power module is getting attention from electronic industries such as solar cell, battery and electric vehicles. Transient liquid phase (TLP) boding, sintering with Ag and Cu powders and wire bonding are applied to power module packaging. Sintering is a popular process but it has some disadvantages such as high cost, complex procedures and long bonding time. Meanwhile, TLP bonding has lower bonding temperature, cost effectiveness and less porosity. However, it also needs to improve ductility of the intermetallic compounds (IMCs) at the joint. Wire boding is also an important interconnection process between semiconductor chip and metal lead for direct bonded copper (DBC). In this study, TLP bonding using Sn-based solders and wire bonding process for power electronics packaging are described.

직접압출에 의한 Cu-Al 층상 복합재료 봉의 금속유동과 계면접합 (Metal Flow and Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion)

  • 윤여권;김희남
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.166-173
    • /
    • 2001
  • Composite materials consists of two or more different material layers. The usefulness of clad metal rods forms the possibilities of combination of properties of different metals. Copper clad aluminum composite materials are being used for economic and structural purpose. In this study, composite billet consists of commercially pure copper and aluminum(A6061) and experimental conditions consist of the combinations of clad thickness, extrusion ratio, and semi-cone angle of die. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios, semi-cone angles of die, and composition rate of Cu:Al.

  • PDF

저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합 (Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density)

  • 이채린;이진현;박기문;유봉영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

활성금속 브레이징을 사용한 세라믹과 금속의 접합 (Joining of Ceramic and Metal using Active Metal Brazing)

  • 기세호;허증봉;정재필;김원중
    • 마이크로전자및패키징학회지
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2011
  • Active brazing of ceramic to metal is reviewed in this paper. As one of the key aspect in joint techniques, active brazing has been developed to simplify the manufacturing procedure of brazed joints between ceramic and metal. The active filler metal includes Ag-Cu-Ti series, Cu-Ti series, Co-Ti series and so on. The active filler metal which supplies the chemical bonds between ceramic and metal, enhances the wetting of filler metal on ceramic surface and eliminates the need for metallization treatments. The residual stress caused by difference of coefficient of thermal expansion between ceramic and metal, holds a direct influence on the bonding strength and even results in a fracture. Good joints of ceramic to metal promote the miniaturization and simplicity of electronic components with multifunction.

직류전원부하에 의한 지르코니아와 금속의 접합 (A Study on the Metal to Zirconia Joining by Applying Direct Current)

  • 김성진;김문협;박성범;권원일
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.383-390
    • /
    • 2005
  • Effect of applying a DC voltage on the interfacial reaction at the metal to zirconia interface was investigated utilizing an oxygen ionic conductivity of partially stabilized zirconia. The joining of copper rod and zirconia tube was carried out in Ar gas atmosphere at $1000^{\circ}C$. There are two type of the joining. The one is the reaction bond consisting of copper and zirconia was dominated by surface reaction with a undetectable very thin layer. It was found that copper elements were diffused to zirconia side, but that Zr ions were not diffused to copper side. These results mean application of a DC voltage to migrate oxygen to the copper-zirconia interface can oxidize metal at the copper-zirconia interface and the bonding reaction between zirconia and copper oxide may occur. The other is the reaction bonding was dominated by interdiffusion with a very thick interface layer. This result mean application of a DC voltage can reduce zirconia at the interface. The bonding reaction is to be an alloying between Zr and Cu.

  • PDF

모꾸메가네 장신구를 위한 은/동 접합 잉곳 소재 개발 (Development of the Ag/Cu Ingots for Mokumegane Jewelry)

  • 송오성;김종률;김명로
    • 한국산학기술학회논문지
    • /
    • 제9권1호
    • /
    • pp.9-15
    • /
    • 2008
  • 모꾸메가네는 나무결 모양을 낼 수 있는 고부가가치가 가능한 장신구 소재이며 서로 다른 금속을 가공하기 위해 융점이 다른 두 가지 이상 금속을 적층하여 붙인 잉곳 제작이 필수적이다. 기존의 모꾸메가네용 잉곳은 숯을 이용한 환원성 분위기에서 경험에 근거한 육안 판별로 만들어져서 접합의 신뢰성과 후속 가공 도중 층간 분리가 일어나는 분제가 있었다. $900^{\circ}C$에서 2.5kg의 압력을 가하면서 진공 열처리로를 이용하여 90% 이상 접합율이 가능한 조건을 확인하였다. 계면에서의 계면 확산계수가 통상의 벌크 확산계수보다 100배 향상되는 것을 확인하였고 이종 접합시에 계면 확산계수를 확인하여 $700^{\circ}C$의 저온에서 10분동안 진공열처리, 90% 이상 접합율을 가진 모꾸메가네용 잉곳을 성공적으로 제조하였다. 제조된 잉곳으로 핸드폰 외장용 모꾸메가네 시작품을 성공적으로 제조할 수 있었다.

The Crystal and Molecular Structure of Chloramphenicol Base

  • Shin, Whan-Chul;Pyo, Myung_Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권4호
    • /
    • pp.158-162
    • /
    • 1984
  • The crystal structure of chloramphenicol base, $C_9H_{l2}N_2O_4$, the deacylated base of antibiotic chloramphenicol, has been determined by X-ray diffraction techniques using diffractometer data obtained by the ${\omega}-2{\theta}$ scan technique with CuK${\alpha}$ radiation from a crystal with space group symmetry $P2_12_12_1$ and unit cell parameters a = 22.322(6), b = 7.535(6), c = 5.781(5) ${\AA}$. The structure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.051 for the 573 observed reflections. The overall conformation of the base is quite different from those of the chloramphenicol congeners which are similar despite the presence of many rotatable single bonds. The propane chain in the base is bent with respect to the phenyl ring, while it is extended in the chloramphenicol congeners. There is no intramolecular hydrogen bond between the hydroxyl groups of the propanediol moiety. All of the molecules in the crystal lattice are connected by a three-dimensional hydrogen bonding network.

The Crystal and Molecular Structure of Phlorizin Dihydrate

  • Shin, Whan-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권1호
    • /
    • pp.7-11
    • /
    • 1985
  • The crystal structure of phlorizin, a ${\beta}$ -D-glucopyranoside of a flavonoid dihydrochalcone phloretin, has been determined by single crystal diffraction methods using diffractometer data obtained by the ${\omega}-2{\theta}$ scan technique with Cu $K{\alpha}$ radiation from a crystal with space group symmetry $P2_12_12_1$ and unit cell parameters a = 4.9094 (2), b = 19.109 (1), c = 23.275 (4) $\AA$. The structure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.047 for the 1697 observed reflections. The dihydrochalcone moiety is flat and fully extended. The glucose ring has the $^4C_1$ chair conformation and the conformation of the primary alcohol group is gauche-gauche. The crystal packing is dominated by an extensive hydrogen bonding pattern. There are one strong and two weak intramolecular hydrogen bonds in the phlorizin molecule.