• Title/Summary/Keyword: Cu-Ca alloys

Search Result 23, Processing Time 0.022 seconds

The Effects of Thermo-mechanical Treatment on the Thixoforming Process of Cu-Ca Alloys for High Efficiency Electrical Motors (고효율 전동기용 Cu-Ca 합금의 반응고 성형공정에 미치는 가공열처리의 영향)

  • Lee, E.Y.;Kang, B.M.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.5
    • /
    • pp.267-274
    • /
    • 2003
  • The effect of the thermo-mechanical treatment on the microstructural development and the electric conductivity of Cu-Ca alloys are studied for the thixoforming processed rotor of the induction motor The Cu-Ca alloys containing Ca less than 1.0wt% show the electrical conductivity higher than 80% IACS They also show broad melting range over $150^{\circ}C$ which is desirable for the thixoforming process The semi-solid microstructure of cast alloy changes from the dendrite structure to globular structure by prior deformation before reheating. The details of microstructural changes by the thermo-mechanical treatment are discussed.

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

Process Control and Thixoforming of Cu Rotor for High Efficiency Motors (고효율 전동기용 Cu Rotor의 반응고 성형과 공정변수 제어)

  • Jung, W. S.;Lee, S. Y.;Shin, P. W.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.642-648
    • /
    • 2005
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve the efficiency of induction motors, newly developed Cu-Ca alloys have been investigated. The electrical conductivity in the Cu alloys containing Ca less than $1.0wt\%$ was higher than $80\%$ IACS. Cu-Ca alloy is desirable for the thixoforming process because it has wide semi-solid range over $150^{\circ}C$. In this study, Cu-rotor with thixoforming process was developed to replace the conventional aluminum diecasting rotor. Analysis was performed for the microstructure of thixoforming rotor. Effect of incomplete filling on the efficiency of induction motor was discussed.

Process Control and Thixoforming Cu Rotor for High Efficiency Motors (고효율 전동기용 Cu Rotor의 반응고 성형과 공정변수 제어)

  • Jung W. S.;Lee S. Y.;Shin P. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.233-236
    • /
    • 2005
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve efficiency of induction motors, newly developed Cu-Ca alloys have been investigated. The electrical conductivity in the Cu alloys containing Ca less than $1.0wt\%$ was higher than $80\%$ IACS. Cu-Ca alloy is desirable for the thixoforming process because it has wide semi-solid range over $150^{\circ}C$. In this study, Cu-rotor with thixoforming process was developed to replace the conventional aluminum diecasting rotor. Analysis microstructure of thixoforming rotor. effect of incomplete filling defect on the efficiency of induction motor was discussed.

  • PDF

Effect of Ca and Al Additions on the Magnetic Properties of Nanocrytalline Fe-Si-B-Nb-Cu Alloy Powder Cores

  • Moon, Sun Gyu;Kim, Ji Seung;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2016
  • The Fe-Si-B-Nb-Cu alloys containing Ca and Al were rapidly solidified to thin ribbons by melt-spinning. The ribbons were ball-milled to make powders, and then mixed with 1 wt.% water glass and 1.5 wt.% lubricant. The mixed powders were burn-off, and then compacted to form toroidal-shaped cores, which were heat treated to crystallize the nano-grain structure and to remove residual stress of material. The characteristics of the powder cores were analyzed using a differential scanning calorimetry (DSC) and a B-H meter. The microstructures were observed using transmission electron microscope (TEM). The optimized soft magnetic properties (${\mu}_i$ and $P_{cv}$) of the powder cores were obtained from the Ca and Al containing alloys after annealing at $530^{\circ}C$ for 1 h. The core loss of Fe-Si-B-Nb-Cu-based powder cores was reduced by the addition of Ca element, and the initial permeability increased due to the addition of Al element.

Electrochemical Deposition Characteristics of Ca2+ on Cu Wire Electrode in CaCl2 Molten Salt (CaCl2 용융염에서 Ca2+의 Cu 전극에 대한 전기화학적 증착 특성평가)

  • Hwang, Dong Wook;Lee, Jong Hyeon;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • With the expansion of the automobile market, the demand for Nd as an essential rare earth material for automobile motors is rapidly increasing. Research on the calcio-thermic reduction process between Nd2O3 and calcium-based alloys has been extensively studied in order to manufacture Nd. In this study, Ca-Cu, as a reducing for Nd2O3, was prepared by electrolysis in CaCl2 molten salt. Cu wire and graphite were employed as a working electrode and a counter electrode for electrolysis reaction, respectively. The reference electrode was manufactured by putting Ag wire in a mixture of AgCl and CaCl2 at a ratio of 1:99 mol%. The cyclic voltammetry results showed that the deposition of Ca2+ on the surface of working electrode was observed from a potential of -1.8 V, and the reduction potential of Ca2+ decreased as the reaction temperature increased. The diffusion coefficient of Ca2+ calculated by the chronoamperometry experiment was found to be 5.4(±6.8)×10-6 cm2/s. In addition, Ca-Cu liquid alloy was prepared by applying a constant potential to Cu electrodes. The element ratio of Ca-Cu alloy formed by applying a potential of -2.0 V was found to Ca:Cu=1:4.

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries

  • Abd El-Rahman, H.A.;Gad-Allah, A.G.;Salih, S.A.;Abd El-Wahab, A.M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.

Molten Salt-Based Carbon-Neutral Critical Metal Smelting Process From Oxide Feedstocks

  • Wan-Bae Kim;Woo-Seok Choi;Gyu-Seok Lim;Vladislav E. Ri;Soo-Haeng Cho;Suk-Cheol Kwon;Hayk Nersisyan;Jong-Hyeon Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.9-22
    • /
    • 2023
  • Spin-off pyroprocessing technology and inert anode materials to replace the conventional carbon-based smelting process for critical materials were introduced. Efforts to select inert anode materials through numerical analysis and selected experimental results were devised for the high-throughput reduction of oxide feedstocks. The electrochemical properties of the inert anode material were evaluated, and stable electrolysis behavior and CaCu generation were observed during molten salt recycling. Thereafter, CuTi was prepared by reacting rutile (TiO2) with CaCu in a Ti crucible. The formation of CuTi was confirmed when the concentration of CaO in the molten salt was controlled at 7.5mol%. A laboratory-scale electrorefining study was conducted using CuTi(Zr, Hf) alloys as the anodes, with a Ti electrodeposit conforming to the ASTM B299 standard recovered using a pilot-scale electrorefining device.

Microstructure, Tensile Strength, and High Cycle Fatigue Properties of Mg+Al2Ca added ADC12 (Al-Si-Cu) Alloy (Mg+Al2Ca 첨가 ADC12 (Al-Si-Cu) 합금의 미세조직, 인장 및 고주기 피로 특성)

  • Kim, Y.K.;Kim, M.J.;Kim, Shae K.;Yoon, Y.O.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.306-313
    • /
    • 2017
  • This study investigated the microstructure, tensile strength, and high cycle fatigue properties of ADC12 aluminum alloys with different $Mg+Al_2Ca$ contents manufactured using die casting process. Microstructural observation identified the presence of ${\alpha}-Al$, eutectic Si, $Al_2Cu$, and Fe-intermetallic phases. The increase of $Mg+Al_2Ca$ content resulted in finer pore size and decreased pore distribution. Room temperature tensile strength tests were conducted at strain rate of $1{\times}10^{-3}/sec$. For 0.6%Mg ADC12, measured UTS, YS, and El were 305.2MPa, 157.0MPa, and 2.7%, respectively. For 0.8%Mg ADC12, measured UTS, YS, and El were 311.2 MPa, 159.4 MPa, and 2.4%, respectively. Therefore, 0.8% ADC12 alloy had higher strength and slightly decreased elongation compared to 0.6% Mg ADC12. High cycle fatigue tests revealed that 0.6% Mg ADC12 alloy had a fatigue limit of 150 MPa while 0.8% Mg ADC12 had a fatigue limit of 160MPa. It was confirmed that $Mg+Al_2Ca$ added ADC12 alloy achieved finer, spherical eutectic Si particles, and $Al_2Cu$ phases with greater mechanical and fatigue properties since size and distribution of pores and shrinkage cavities decreased as $Mg+Al_2Ca$ content increased.

Effect of T6 and T73 Heat Treatments on Microstructure, Mechanical Responses and High Cycle Fatigue Properties of AA7075 Alloy Modified with Mg and Al2Ca ((Mg + Al2Ca)로 개량된 AA7075 합금의 미세조직, 기계적 특성, 그리고 고주기 피로 특성에 미치는 T6 및 T73 열처리의 효과)

  • Hwang, Y.J.;Kim, G.Y.;Kim, K.S.;Kim, Shae K.;Yoon, Y.O.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The effects of heat treatments (T6 and T73) on the microstructure, mechanical properties, and high cycle fatigue behavior of modified AA7075 alloys were investigated. A modified 7075 alloy was manufactured using modified-Mg (Mg-Al2Ca) instead of the conventional element Mg. Based on the microstructure, the average grain size was 4.5 ㎛ (T6) and 5.2 ㎛ (T73). Regardless of heat treatment, the modified AA7075 alloys consisted of Al matrix containing homogeneously distributed Al2CuMg and MgZn2 phases with reduced Fe-intermetallic compound. Room temperature tensile tests showed that the properties of modified 7075-T6 (Y.S.: 622MPa, T.S: 675MPa, elongation: 15.4%) were superior to those of T73 alloy (Y.S.: 492MPa, T.S: 548MPa, elongation: 12.8%). Experimental data show that the fatigue life of T6 was 400 MPa, about 64% of its yield strength. However, the fatigue life of T73 alloy was 330 MPa and 67%. Irrespective of the stress level, all crack initiation points were located on the specimen surface, and no inclusions acting as stress concentrators were seen. Superior mechanical properties and high cycle fatigue behavior of modified AA7075-T6 alloy are attributed to the fine grains and homogeneous distribution of small second phases such as MgZn2 and Al2CuMg, in addition to reduced Fe-intermetallic compounds.