DOI QR코드

DOI QR Code

Molten Salt-Based Carbon-Neutral Critical Metal Smelting Process From Oxide Feedstocks

  • Wan-Bae Kim (Chungnam National University) ;
  • Woo-Seok Choi (Chungnam National University) ;
  • Gyu-Seok Lim (Chungnam National University) ;
  • Vladislav E. Ri (Chungnam National University) ;
  • Soo-Haeng Cho (Rapidly Solidified Materials Research Center (RASOM), Chungnam National University) ;
  • Suk-Cheol Kwon (Korea Institute of Geoscience and Mineral Resources) ;
  • Hayk Nersisyan (Rapidly Solidified Materials Research Center (RASOM), Chungnam National University) ;
  • Jong-Hyeon Lee (Chungnam National University)
  • Received : 2022.08.04
  • Accepted : 2022.11.03
  • Published : 2023.03.31

Abstract

Spin-off pyroprocessing technology and inert anode materials to replace the conventional carbon-based smelting process for critical materials were introduced. Efforts to select inert anode materials through numerical analysis and selected experimental results were devised for the high-throughput reduction of oxide feedstocks. The electrochemical properties of the inert anode material were evaluated, and stable electrolysis behavior and CaCu generation were observed during molten salt recycling. Thereafter, CuTi was prepared by reacting rutile (TiO2) with CaCu in a Ti crucible. The formation of CuTi was confirmed when the concentration of CaO in the molten salt was controlled at 7.5mol%. A laboratory-scale electrorefining study was conducted using CuTi(Zr, Hf) alloys as the anodes, with a Ti electrodeposit conforming to the ASTM B299 standard recovered using a pilot-scale electrorefining device.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (Ministry of Science, ICT, and Future Planning) (NRF-2017M2B2B1072889), partially supported by the Materials/Parts Technology Development Program (20010585, High purity metal refining technology for titanium metal with zero toxic gas emission) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and also Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0002019, The Competency Development Program for Industry Specialist).

References

  1. Z. Liu, Z. Deng, S.J. Davis, C. Giron, and P. Ciais, "Monitoring Global Carbon Emissions in 2021", Nat. Rev. Earth Environ., 3(4), 217-219 (2022).  https://doi.org/10.1038/s43017-022-00285-w
  2. D.K. Kim and I.S. Son, Green Energy Collaborative Task: Implementation Management of Low-Carbon Energy Transition, Korea Energy Economics Institute Issue Paper, 19-27, ISBN 978-89-5504-756-1 (2019). 
  3. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of Pyroprocessing Technology", Prog. Nucl. Energy, 31(1-2), 131-140 (1997).  https://doi.org/10.1016/0149-1970(96)00007-8
  4. H.S. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.J. Cho, and E.H. Kim, "Pyroprocessing Technology Development at KAERI", Nucl. Eng. Technol., 43(4), 317-328 (2011).  https://doi.org/10.5516/NET.2011.43.4.317
  5. M.F. Simpson. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory, Idaho National Laboratory Technical Report, INL/EXT-12-25124 (2012). 
  6. K. Ono and R.O. Suzuki, "A New Concept for Producing Ti Sponge: Calciothermic Reduction", JOM, 54(2), 59-61 (2002).  https://doi.org/10.1007/BF02701078
  7. G.Z. Chen, D.J. Fray, and T.W. Farthing, "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride", Nature, 407(6802), 361-364 (2000).  https://doi.org/10.1038/35030069
  8. D. Fray and C. Schwandt, "Aspects of the Application of Electrochemistry to the Extraction of Titanium and Its Aapplications", Mater. Trans., 58(3), 306-312 (2017).  https://doi.org/10.2320/matertrans.MK201619
  9. R.O. Suzuki, K. Ono, and K. Teranuma, "Calciothermic Reduction of Titanium Oxide and In-Situ Electrolysis in Molten CaCl2", Metall. Mater. Trans. B, 34B(3), 287-295 (2003).  https://doi.org/10.1007/s11663-003-0074-1
  10. I. Park, T. Abiko, and T.H. Okabe, "Production of Titanium Powder Directly From TiO2 in CaCl2 Through an Electronically Mediated Reaction (EMR)", J. Phys. Chem. Solids, 66(2-4), 410-413 (2005).  https://doi.org/10.1016/j.jpcs.2004.06.052
  11. U.B. Pal, D.E. Woolley, and G.B. Kenney, "Emerging SOM Technology for the Green Synthesis of Metals From Oxides", JOM, 53(10), 32-35 (2001).  https://doi.org/10.1007/s11837-001-0053-4
  12. A. Krishnan, X.G. Lu, and U.B. Pal, "Solid Oxide Membrane (SOM) Technology for Environmentally Sound Production of Tantalum Metal and Alloys From Their Oxide Sources", Scand. J. Metall., 34(5), 293-301 (2005).  https://doi.org/10.1111/j.1600-0692.2005.00749.x
  13. M. Suput, R. Delucas, S. Pati, G. Ye, U. Pal, and A.C. Powell IV, "Solid Oxide Membrane Technology for Environmentally Sound Production of Titanium", Miner. Process. Extr. Metall., 117(2), 118-122 (2008).  https://doi.org/10.1179/174328508X290911
  14. W. Kroll, "The Production of Ductile Titanium", Trans. Electrochem. Soc., 78(1), 35-47 (1940).  https://doi.org/10.1149/1.3071290
  15. F. Gao, Z. Nie, D. Yang, B. Sun, Y. Liu, X. Gong, and Z. Wang, "Environmental Impacts Analysis of Titanium Sponge Production Using Kroll Process in China", J. Clean. Prod., 174, 771-779 (2018).  https://doi.org/10.1016/j.jclepro.2017.09.240
  16. V. Ri, H. Nersisyan, K.S. Lim, W.B. Kim, W.S. Choi, H.T. Nam, and J.H. Lee, "Synthesis and Performance of Ti Subchlorides (TiClx, x = 2, 3) as a Ti-ion Transport Agent in NaCl-CaCl2 Molten Electrolyte", Materialia, 24, 101498 (2022). 
  17. S.H. Lee, "Study of CuZr Anode Dissolution Behavior During Electrorefining in Ba2ZrF8-LiF Electrolyte", A. Thesis Submitted to the Committee of Graduate School, Chungnam National University in a Partial Fulfillment of the Requirements for the Degree of Master of Science in Materials Science & Engineering Conferred in (2018). 
  18. B.U. Yoo, Y.J. Lee, V. Ri, S.H. Lee, H. Nersisyan, H.Y. Kim, J.H. Lee, N. Earner, and A. MacDonald, "Minimising Oxygen Contamination Through a Liquid Copper-aided Group IV Metal Production Process", Sci. Rep., 8(1), 17391 (2018). 
  19. H.B. He, Y. Wang, J.J. Long, and Z.H. Chen, "Corrosion of NiFe2O4-10NiO-Based Cermet Inert Anodes for Aluminium Electrolysis", Trans. Nonferrous Met. Soc. China, 23(12), 3816-3821 (2013).  https://doi.org/10.1016/S1003-6326(13)62934-9
  20. Y. Tao, Z. Li, H. Shao, and Y. Chen, "Oxidation and Corrosion Behavior of (Cu-10Cu2O) - (NiFe2O4-10NiO) Cermet Inert Anode With Interpenetrating Structure", Int. J. Electrochem. Sci., 15, 7833-7847 (2020).  https://doi.org/10.20964/2020.08.63
  21. W. Wei, S. Geng, and F. Wang, "Evaluation of Ni-Fe Base Alloys as Inert Anode for Low-temperature Aluminium Electrolysis", J. Mater. Sci. Technol., 107, 216-226 (2022).  https://doi.org/10.1016/j.jmst.2021.08.028
  22. P. Guan, A. Liu, Z. Shi, X. Hu, and Z. Wang, "Corrosion Behavior of Fe-Ni-Al Alloy Inert Anode in Cryolite Melts", Metals, 9(4), 399 (2019). 
  23. W.B. Kim, S.C. Kwon, S.H. Cho, and J.H. Lee, "Effect of the Grain Size of YSZ Ceramic Materials on Corrosion Resistance in a Hot Molten Salt CaCl2-CaF2-CaO System", Corros. Sci., 170, 108664 (2020). 
  24. H. Yin, L. Gao, H. Zhu, X. Mao, F. Gan, and D. Wang, "On the Development of Metallic Inert Anode for Molten CaCl2-CaO System", Electrochim. Acta, 56(9), 3296-3302 (2011).  https://doi.org/10.1016/j.electacta.2011.01.026
  25. K. Persson. November 2014. "Materials Data on CaO (SG:225) by Materials Projects." The Materials Project Homepage. Accessed Jun. 4 2022. Available from: https://legacy.materialsproject.org/materials/mp2605/. 
  26. Y. Tago, Y. Endo, K. Morita, F. Tsukihashi, and N. Sano, "The Activity of CaO in the CaO-CaCl2 and CaO-CaCl2-CaF2 Systems", ISIJ Int., 35(2), 127-131 (1995).  https://doi.org/10.2355/isijinternational.35.127
  27. L. Ding, Y. Yan, V. Smolenski, A. Novoselova, Y. Xue, F. Ma, and M. Zhang, "Electrochemical Studies Based on the Extraction of Zr on Cu Electrode in the LiCl-KCl Molten Salt", Sep. Purif. Technol., 279, 119683 (2021). 
  28. C.P. Fabian, T.H. Le, and A.M. Bond, "Cyclic Voltammetric Experiment-Simulation Comparisons of the Complex Zr4+ to Zr0<.sup> Reduction Mechanism at a Molybdenum Electrode in LiF-CaF2 Eutectic Molten Salt", J. Electrochem. Soc., 169(3), 036506 (2022). 
  29. F. Basile, E. Chassaing, and G. Lorthioir, "Electrochemical Reduction of ZrCl4 in Molten NaCl, CsCl and KCl-LiCl and Chemical Reactions Coupled to the Electrodeposition of Zirconium", J. Appl. Electrochem., 11(5), 645-651 (1981).  https://doi.org/10.1007/BF00616685
  30. S. Sohn, S. Choi, J. Park, and I.S. Hwang, "Computational Model-based Design of Molten Salt Electrorefining Process for High-purity Zirconium Metal Recovery From Spent Nuclear Fuel", Int. J. Energy Res., 45(8), 11775-11790 (2021).  https://doi.org/10.1002/er.5724
  31. H. Nersisyan, H.Y. Woo, V. Ri, H. Thanh-Nam, F. Moon, A. MacDonald, N. Earner, and J.H. Lee, "Hf Metal Powder Synthesis via a Chemically Activated Combustion-reduction Process", Mater. Chem. Phys., 263, 124417 (2021). 
  32. D. Woodall. February 09 2021. "ASM Titanium Powder Approved for 3D Printing by Korean Advanced Manufacturing Company." ASM Ltd. Accessed Jun. 4 2022. Avaliable from : https://asm-au.com/asm-titanium-powder-approved-for-3d-printing-by-korean-advanced-manufacturing-company/.