DOI QR코드

DOI QR Code

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries

  • Abd El-Rahman, H.A. (Chemistry Department, Faculty of Science, Cairo University) ;
  • Gad-Allah, A.G. (Chemistry Department, Faculty of Science, Cairo University) ;
  • Salih, S.A. (Chemistry Department, Faculty of Science, Cairo University) ;
  • Abd El-Wahab, A.M. (Chemistry Department, Faculty of Science, Cairo University)
  • Received : 2012.08.22
  • Accepted : 2012.09.12
  • Published : 2012.09.30

Abstract

The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.

Keywords

References

  1. Stevenson, M., Recycling|Lead-Acid Batteries: overview, in Encyclopedia of Electrochemical Power Sources, J. Garche, ed., Elsevier (2009).
  2. S. Prolich and D. Sewig, J. Power Sources, 57, 27 (1995). https://doi.org/10.1016/0378-7753(95)02234-1
  3. T. W. Ellis and A. H. Mirza, J. Power Sources, 195, 4525 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.118
  4. D. Pavlov, Lead-Acid Batteries, Science and Technology, Ch. 1, Elsevier (2011).
  5. D. A. Rand, P. T. Moseley, J. Garche and C. D. Parker, Eds., Valve-Regulated Lead-Acid Batteries, Ch. 2, Elsevier (2004).
  6. R. D. Perngaman, J. Power Sources, 33, 13 (1991). https://doi.org/10.1016/0378-7753(91)85044-W
  7. W. R. Osorio, L. C. Peixoto and A. Garcia, J. Power Sources, 195, 1726 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.054
  8. C. S. Lakshmi, J. E. Manders and D. M. Rice, J. Power Sources, 73, 23 (1998). https://doi.org/10.1016/S0378-7753(98)00018-4
  9. G. Bourguignon, A. Maitre E. Rocca, J. Steinmetz and L. Torcheux, J. Power Sources, 113, 301 (2003). https://doi.org/10.1016/S0378-7753(02)00525-6
  10. E. Rocca and J. Steinmetz, Electrochim. Acta, 44, 4611 (1999). https://doi.org/10.1016/S0013-4686(99)00186-3
  11. V. F. Bashev, N. E. Zhitnik, V. A. Ivanov, D. A.Rybalka and Yu. A. Tkackenko, Metalloy, 1, 85 (2011).
  12. E. Rocca , G. Bourguignon and J. Steinmetz, J. Power Sources, 161, 666 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.140
  13. H. Li, W.X. Guo, H. Y. Chen, D. E. Finlow, H. W. Zhou, C. L. Dou, G. M. Xiao, S. G. Peng and W. W. Wei, H. Wang, J. Power Sources, 191, 111 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.059
  14. W. Zhang, A. Li, H. Chen, B. Lan, K. Pan, T. Zhang, M. Fang, S. Liu and W. Zhang, J. power Sources, 203, 145 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.067
  15. W. Wang, B. Zhou, G. S. Rohrer , H. Guo and Z. Cai, Material Science and Engineering: A, 527, 3695 (2010). https://doi.org/10.1016/j.msea.2010.03.081
  16. F. A. Perez-Gonzalez, C. G. Camurri, C.A. Carrasco and R. Colas, Materials Characterization, 64, 62 (2012). https://doi.org/10.1016/j.matchar.2011.11.013
  17. H. Li, W. X. Guo, H. Y. Chen, D. E. Finlow, H. W. Zhou, C. L. Dou, G. M. Xiao, S. G. Peng, W. W. Wei and H. Wang, J. Power Sources, 191, 111 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.059
  18. J. R. MacDonald, J. Electroanal.Chem., 223, 25 (1987). https://doi.org/10.1016/0022-0728(87)85249-X
  19. S. Brinic, M. Metikos-Hukovic and R. Babic, J. Power Sources, 5, 19 (1995).
  20. M. M. Burashnikova, I. A. Kazarinov and I. V. Zotova, J. Power Sources, 207, 19 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.042
  21. H. A. Abd El-Rahman, S. A. Salih and A. M. Abd El- Wahab, Mat. -wiss u. werkstofftech., 42, 784 (2011). https://doi.org/10.1002/mawe.201100770
  22. M. Metikos-Hukovic, R. Babic and S. Brinic, J. Power Sources, 157, 563 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.079
  23. P. Simon, N. Bui, N. Pebere, F. Dabosi and L. Albert, J. Power Sources, 55, 63 (1995). https://doi.org/10.1016/0378-7753(94)02175-3
  24. D. G. Li, G. S. Zhou, J. Zhang and M. S. Zheng, Electrochim. Acta, 52, 2146 (2007). https://doi.org/10.1016/j.electacta.2006.08.051
  25. A. G. Gad-Allah, H. A. Abd El-Rahman and M. abd El- Galil, J. Power Sources, 62. 51 (1996). https://doi.org/10.1016/S0378-7753(96)02398-1
  26. A. G. Gad-Allah, H. A. Abd El-Rahman, S. A. Salih and M. abd El-Galil, J. Appl. Electrochem., 22, 571 (1992). https://doi.org/10.1007/BF01024099
  27. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd Ed., Ch 10, Wiley (2001).
  28. A. Czerwinski, M. Zelazowska, M. Grden, K. Kuc, J. D. Milewski, A. Nowacki, G. Wojcik and M. Kopczyk, J. Power Sources, 85, 49 (2000). https://doi.org/10.1016/S0378-7753(99)00381-X
  29. A. G. Gad-Allah, H. A. Abd El-Rahman, S. A. Salih and M. abd El-Galil, J. Appl. Electrochem., 25, 682 (1995).
  30. H. A. Abd El-Rahman, S. A. Salih and A. M. Abd El- Wahab, J. Electrochem. Scienec and Technology., 2, 76 (2011). https://doi.org/10.5229/JECST.2011.2.2.076
  31. V. Lliev and D. Pavlov, J. Electrochem. Soc., 129, 1393 (1982). https://doi.org/10.1149/1.2124172
  32. J. S. Symanski, B. K. Mahato and K. R. Bullock, J. Electrochem. Soc., 135, 548 (1988). https://doi.org/10.1149/1.2095655

Cited by

  1. Effect of phosphoric acid concentration on conductivity of anodic passive film formed on surface of lead–indium alloy vol.26, pp.3, 2016, https://doi.org/10.1016/S1003-6326(16)64181-X