DOI QR코드

DOI QR Code

Electrochemical Deposition Characteristics of Ca2+ on Cu Wire Electrode in CaCl2 Molten Salt

CaCl2 용융염에서 Ca2+의 Cu 전극에 대한 전기화학적 증착 특성평가

  • Hwang, Dong Wook (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Hyeon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • 황동욱 (충북대학교 화학공학과) ;
  • 이종현 (충남대학교 신소재공학과) ;
  • 정상문 (충북대학교 화학공학과)
  • Received : 2021.09.04
  • Accepted : 2021.10.26
  • Published : 2022.05.01

Abstract

With the expansion of the automobile market, the demand for Nd as an essential rare earth material for automobile motors is rapidly increasing. Research on the calcio-thermic reduction process between Nd2O3 and calcium-based alloys has been extensively studied in order to manufacture Nd. In this study, Ca-Cu, as a reducing for Nd2O3, was prepared by electrolysis in CaCl2 molten salt. Cu wire and graphite were employed as a working electrode and a counter electrode for electrolysis reaction, respectively. The reference electrode was manufactured by putting Ag wire in a mixture of AgCl and CaCl2 at a ratio of 1:99 mol%. The cyclic voltammetry results showed that the deposition of Ca2+ on the surface of working electrode was observed from a potential of -1.8 V, and the reduction potential of Ca2+ decreased as the reaction temperature increased. The diffusion coefficient of Ca2+ calculated by the chronoamperometry experiment was found to be 5.4(±6.8)×10-6 cm2/s. In addition, Ca-Cu liquid alloy was prepared by applying a constant potential to Cu electrodes. The element ratio of Ca-Cu alloy formed by applying a potential of -2.0 V was found to Ca:Cu=1:4.

자동차 시장의 확대에 따라 자동차 모터의 필수 소재로 희토류금속인 Nd에 대한 수요가 급증하고 있다. Nd를 제조하기 위하여 Nd2O3와 Ca계 합금의 열 환원반응에 관한 연구가 활발히 진행되어 왔다. 본 연구에서는 Nd2O3의 환원제로 사용되는 Ca계 합금인 Ca-Cu를 CaCl2 용융염에서 전기분해반응을 통해 제조하였다. 전기분해반응의 작업 전극과 상대전극으로는 Cu 와이어와 흑연을 각각 사용하였다. 기준전극은 AgCl:CaCl2=1:99 mol%로 혼합한 혼합물에 Ag 와이어를 넣어 제작하였다. 순환전압 전류법 결과에 의하면 -1.8 V의 전위부터 작업전극의 표면에 Ca2+의 증착이 관찰되었으며, CaCl2 염의 온도가 증가할수록 Ca2+의 환원전위가 감소하였다. 시간대전류법 실험을 통해 계산된 Ca2+의 확산계수는 5.4(±6.8)×10-6 cm2/s으로 나타났다. 또한, Cu 전극에 일정한 전위를 가해 Ca-Cu 액상합금을 제조하였으며 제조된 합금은 EDS line scan을 통해 인가 전위의 증가에 따라 Ca의 전기화학적 삽입이 증가함을 확인하였다. -2.0 V보다 음의 전위를 인가하여 제조한 Ca-Cu 합금의 조성비는 Ca:Cu=1:4임을 확인하였다.

Keywords

Acknowledgement

이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20010551). 이 논문은 2021학년도 충북대학교 연구년제 지원에 의하여 연구되었음.

References

  1. Pillay, P. and Krishnan, R., "Modeling of Permanent Magnet Motor Drives," IEEE Trans. Ind. Electron., 35(4), 537-541(1988). https://doi.org/10.1109/41.9176
  2. Herbst, J. P. and Croat, J. J., "Neodymium-iron-boron Permanent Magnets," J. Magn. Magn. Mater., 100, 57-78(1991). https://doi.org/10.1016/0304-8853(91)90812-O
  3. Dent, P. C., "Rare Earth Elements and Permanent Magnets," Appl. Phys., 111(7), 07A721(2012). https://doi.org/10.1063/1.3676616
  4. Thudum, R., Srivastava, A., Nandi, S., Nagaraj, A. and Shekhar, R., "Molten Salt Electrolysis of Neodymium: Electrolyte Selection and Deposition Mechanism," Miner. Process. Extr. Metall., 119(2), 88-92(2013). https://doi.org/10.1179/174328510x498134
  5. Ryu, H. Y., Ji, H. S., Jeong, S. M. and Simpson, M. F., "Formation of Mg-Li Alloy by Electro-intercalation of Li+ Ions on a Solid Mg Cathode in a Eutectic LiCl-KCl Salt," Journal of Chemical Engineering of Japan, 47(9), 750-755(2014). https://doi.org/10.1252/jcej.13we325
  6. Park, H. K., Lee, J. Y., Cho, S. W. and Kim, J. S., "Overview on the Technologies for Extraction of Rare Earth Metals," The Korean Institute of Resources Recycling, 212(3), 74-83(2012).
  7. Lee, M. W., Choi, E. Y., Jeon, S. C., Lee, J., Park, S. B., Paek, S. W., Simpson, M. F. and Jeong, S. M., "Enhanced Electrochemical Reduction of Rare Earth Oxides in Simulated Oxide Fuel via co-reduction of NiO in Li2O-LiCl Salt," Electrochemistry Communications, 72, 23-26(2016). https://doi.org/10.1016/j.elecom.2016.08.021
  8. Lim, J. G. and Jeong, S. M., "Preparation of La0.5Nd0.5Ni5 Alloy by an Electrochemical Reduction in Molten LiCl," Korean Chem. Eng. Res., 53(2), 145-149(2015). https://doi.org/10.9713/kcer.2015.53.2.145
  9. Ji, H. S., Ryu, H. Y., Choi, E. Y., Cho, S. W., Simpson, M. F. and Jeong, S. M., "Preparation of NdNi5 Using an Electrochemical Reduction of a NiO-Nd2O3 Mixture in Molten LiCl," J. Ind. Eng. Chem., 24, 259-265(2015). https://doi.org/10.1016/j.jiec.2014.09.039
  10. Sharma, R. A., "Neodymium Production Processes," JOM, 39, 33-37(1987). https://doi.org/10.1007/BF03259468
  11. Firdaus, M., Rhamdhani, M. A., Durandet, Y., Rankin, W. J. and Mcgreogr, K., "Review of High-temperature Recovery of Rare Earth (Nd/Dy) from Magnet Waste," J. Sustain. Metall, 2, 276-295(2016). https://doi.org/10.1007/s40831-016-0045-9
  12. Chambers, M. F. and Murphy, J. E.,"Electrolytic Production of Neodymium Metal from a Molten Chloride Electrolyte," BUREAU OF MINES, RI 9391(1992).
  13. Sharma, R. A. and Seefurth, R. N., "Metallothermic Reduction of Nd2O3 with Ca in CaCl2-NaCl Melts," The Electrochemical Society, 1987-7, 846-857(1987).
  14. Ferro, P. D., Mishra, B., Olson, D. L. and Averill, W. A., "Application of Ceramic Membrane in Molten Salt Electrolysis of CaO-CaCl2", Waste Management, 17(7), 451-461(1997). https://doi.org/10.1016/S0956-053X(97)10051-4
  15. Mohandas, K. S. and Fray, D. J., "FFC Cambridge Process and Removal of Oxygen from Metal-oxygen Systems by Molten Salt Electrolysis: An Overview," Trans. Indian Inst. Met, 57(6), 579-592(2004).
  16. Mohandas, K. S., "Direct Electrochemical Conversion of Metal Oxides to Metal by Molten Salt Electrolysis: A Review," International Journal of Minerals, 112(4), 195-212(2013).
  17. George J. J., "Molten Salts Handbook," Academic Press, 376-379(1967).
  18. Fray, D. J., "Emerging Molten Salt Technologies for Metals Production," JOM, 53, 27-31(2001). https://doi.org/10.1007/s11837-001-0052-5
  19. Stefanidaki, E., Hasiotis, C. and Kontoyannis, C., "Electrodeposition of Neodymium from LiF-NdF3-Nd2O3 Melts," Electrochim. Acta, 46(17), 2665-2670(2001). https://doi.org/10.1016/S0013-4686(01)00489-3
  20. Nasirpouri, F., "In-situ EQCM Evaluation of the Formation of UPD and OPD During Electrodeposition of Pb on Gold," Prot. Met. Phys. Chem. Surf., 47(4), 534-539(2011). https://doi.org/10.1134/S2070205111040137
  21. Kolb, D. M., "Physical and Electrochemical Properties of Metal Monolayers on Metallic Substrates," In Advances in Electrochemistry and Electrochemical Engineering, 11, 125-271(1978).
  22. Pauling, H. J., Staikov, G. and Juttner, K., "Layer-by-layer for-Mation of Heterostructured Ultra-thin Films by UPD and OPD of Metals," J. Electroanal. Cehm., 376(1-2), 179-184(1994). https://doi.org/10.1016/0022-0728(94)03488-5
  23. Vishnu, S. M., Sanil, N. and Mohandas, K. S., "Measurement of Counter Electrode Potential during Cyclic Voltammetry and Demonstration on Molten Salt Electrochemical Cells," Int. Res. J. Pure. Appl. Chem., 15(1), 1-13(2017)
  24. Bort, K., Juttner, W. J., Staikov, G. and Budevski, E., "Underpotential-overpotential Transition Phenomena in Metal Deposition Processes," Electrochim. Acta, 28(7), 985-991(1983). https://doi.org/10.1016/0013-4686(83)85176-7
  25. Cavalieri, O., Bittner, A. M., Kind, H., Kern, K. and Greber, T., "Copper Electrodeposition on Alkanethiolate Covered Gold Electrodes," Z. Phys. Chem., 208, 107-136(1999). https://doi.org/10.1524/zpch.1999.208.Part_1_2.107
  26. Danilov, A. I., Molodkina, E. B. and Polukarov, Y. M., "Formation of Copper Adatom Layers on Polycrystalline Platinum: Adsorption or Two-dimensional Growth?," Russ. J. Electrochem., 34, 1249-1257(1998).
  27. Chakrabarti, D. J. and Laughlin, D. E., "The Ca-Cu (CalciumCopper) System," Bulletin of Alloy Phase Diagrams, 5, 570-576 (1984). https://doi.org/10.1007/BF02868318
  28. Jeong, S. M., Shin, H. S., Cho, S. H., Hur, J. M. and Lee, H. S., "Electrochemical Behavior of a Platinium Ande for Reduction of Uranium Oxid in a LiCl Molten Salt," Electrochim. Acta, 55(5), 1749-1755(2010). https://doi.org/10.1016/j.electacta.2009.10.060
  29. Ozdirik, B., Baert, K., Depover, T., Vereecken, J., Verbeken, K., Terryn, H. and Graeve, I. D., "Development of An Electrochemical Procedure for Monitoring Hydrogen Sorption/desorption in Steel," J. Electrochem. Soc., 164(13), C747-C757(2017). https://doi.org/10.1149/2.0521713jes
  30. Danilov, A. I., Molodkina, E. B., Polukarov, Rudnev, A. V., Polukarov, Y. M. and Feliu, J. M., "Kinetics of Copper Deposition on Pt(111) and Au(111) Electrodes in Solutions of Different Acidities," Electrochim. Acta, 50, 5032-5043(2000). https://doi.org/10.1016/j.electacta.2005.02.078
  31. Danilov, A. I., Molodkina, E. B., Polukarov, Yu. M., Climent, V. and Feliu, J. M.,"Active Centers for Cu UPD-OPD in Acid Sulfate Solution on Pt(111) Electrodes," Electrochim. Acta, 46, 3137-3145(2001). https://doi.org/10.1016/S0013-4686(01)00605-3
  32. Yasuda, K., Shimano, T., Hagiwara, R., Homma, T. and Nohira, T., "Electrolytic Production of Silicon Using Liquid Zinc Alloy in Molten CaCl2", J. Electrochem. Soc., 164(8), H5049-H5056 (2017). https://doi.org/10.1149/2.0121708jes