• 제목/요약/키워드: Ca-Cu alloy

검색결과 36건 처리시간 0.024초

고효율 전동기용 Cu Rotor의 반응고 성형과 공정변수 제어 (Process Control and Thixoforming of Cu Rotor for High Efficiency Motors)

  • 정우성;이상용;신평우
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.642-648
    • /
    • 2005
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve the efficiency of induction motors, newly developed Cu-Ca alloys have been investigated. The electrical conductivity in the Cu alloys containing Ca less than $1.0wt\%$ was higher than $80\%$ IACS. Cu-Ca alloy is desirable for the thixoforming process because it has wide semi-solid range over $150^{\circ}C$. In this study, Cu-rotor with thixoforming process was developed to replace the conventional aluminum diecasting rotor. Analysis was performed for the microstructure of thixoforming rotor. Effect of incomplete filling on the efficiency of induction motor was discussed.

고효율 전동기용 Cu Rotor의 반응고 성형과 공정변수 제어 (Process Control and Thixoforming Cu Rotor for High Efficiency Motors)

  • 정우성;이상용;신평우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.233-236
    • /
    • 2005
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve efficiency of induction motors, newly developed Cu-Ca alloys have been investigated. The electrical conductivity in the Cu alloys containing Ca less than $1.0wt\%$ was higher than $80\%$ IACS. Cu-Ca alloy is desirable for the thixoforming process because it has wide semi-solid range over $150^{\circ}C$. In this study, Cu-rotor with thixoforming process was developed to replace the conventional aluminum diecasting rotor. Analysis microstructure of thixoforming rotor. effect of incomplete filling defect on the efficiency of induction motor was discussed.

  • PDF

고효율 전동기용 Cu-Ca 합금의 반응고 성형공정에 미치는 가공열처리의 영향 (The Effects of Thermo-mechanical Treatment on the Thixoforming Process of Cu-Ca Alloys for High Efficiency Electrical Motors)

  • 이의열;강병무;이상용
    • 열처리공학회지
    • /
    • 제16권5호
    • /
    • pp.267-274
    • /
    • 2003
  • The effect of the thermo-mechanical treatment on the microstructural development and the electric conductivity of Cu-Ca alloys are studied for the thixoforming processed rotor of the induction motor The Cu-Ca alloys containing Ca less than 1.0wt% show the electrical conductivity higher than 80% IACS They also show broad melting range over $150^{\circ}C$ which is desirable for the thixoforming process The semi-solid microstructure of cast alloy changes from the dendrite structure to globular structure by prior deformation before reheating. The details of microstructural changes by the thermo-mechanical treatment are discussed.

CaCl2 용융염에서 Ca2+의 Cu 전극에 대한 전기화학적 증착 특성평가 (Electrochemical Deposition Characteristics of Ca2+ on Cu Wire Electrode in CaCl2 Molten Salt)

  • 황동욱;이종현;정상문
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.175-183
    • /
    • 2022
  • 자동차 시장의 확대에 따라 자동차 모터의 필수 소재로 희토류금속인 Nd에 대한 수요가 급증하고 있다. Nd를 제조하기 위하여 Nd2O3와 Ca계 합금의 열 환원반응에 관한 연구가 활발히 진행되어 왔다. 본 연구에서는 Nd2O3의 환원제로 사용되는 Ca계 합금인 Ca-Cu를 CaCl2 용융염에서 전기분해반응을 통해 제조하였다. 전기분해반응의 작업 전극과 상대전극으로는 Cu 와이어와 흑연을 각각 사용하였다. 기준전극은 AgCl:CaCl2=1:99 mol%로 혼합한 혼합물에 Ag 와이어를 넣어 제작하였다. 순환전압 전류법 결과에 의하면 -1.8 V의 전위부터 작업전극의 표면에 Ca2+의 증착이 관찰되었으며, CaCl2 염의 온도가 증가할수록 Ca2+의 환원전위가 감소하였다. 시간대전류법 실험을 통해 계산된 Ca2+의 확산계수는 5.4(±6.8)×10-6 cm2/s으로 나타났다. 또한, Cu 전극에 일정한 전위를 가해 Ca-Cu 액상합금을 제조하였으며 제조된 합금은 EDS line scan을 통해 인가 전위의 증가에 따라 Ca의 전기화학적 삽입이 증가함을 확인하였다. -2.0 V보다 음의 전위를 인가하여 제조한 Ca-Cu 합금의 조성비는 Ca:Cu=1:4임을 확인하였다.

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

Mg+Al2Ca 첨가 ADC12 (Al-Si-Cu) 합금의 미세조직, 인장 및 고주기 피로 특성 (Microstructure, Tensile Strength, and High Cycle Fatigue Properties of Mg+Al2Ca added ADC12 (Al-Si-Cu) Alloy)

  • 김영균;김민종;김세광;윤영옥;이기안
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.306-313
    • /
    • 2017
  • This study investigated the microstructure, tensile strength, and high cycle fatigue properties of ADC12 aluminum alloys with different $Mg+Al_2Ca$ contents manufactured using die casting process. Microstructural observation identified the presence of ${\alpha}-Al$, eutectic Si, $Al_2Cu$, and Fe-intermetallic phases. The increase of $Mg+Al_2Ca$ content resulted in finer pore size and decreased pore distribution. Room temperature tensile strength tests were conducted at strain rate of $1{\times}10^{-3}/sec$. For 0.6%Mg ADC12, measured UTS, YS, and El were 305.2MPa, 157.0MPa, and 2.7%, respectively. For 0.8%Mg ADC12, measured UTS, YS, and El were 311.2 MPa, 159.4 MPa, and 2.4%, respectively. Therefore, 0.8% ADC12 alloy had higher strength and slightly decreased elongation compared to 0.6% Mg ADC12. High cycle fatigue tests revealed that 0.6% Mg ADC12 alloy had a fatigue limit of 150 MPa while 0.8% Mg ADC12 had a fatigue limit of 160MPa. It was confirmed that $Mg+Al_2Ca$ added ADC12 alloy achieved finer, spherical eutectic Si particles, and $Al_2Cu$ phases with greater mechanical and fatigue properties since size and distribution of pores and shrinkage cavities decreased as $Mg+Al_2Ca$ content increased.

비평형 열처리에 의한 주조용 Al-Si-Cu합금 조직의 개량 효과 (Effects of the Non-equilibrium Heat-treatment on Modification of Microstructures of Al-Si-Cu Cast Alloy)

  • 김헌주
    • 열처리공학회지
    • /
    • 제13권6호
    • /
    • pp.391-397
    • /
    • 2000
  • Addition of Ca element and nonequilibrium heat treatment which promotes shape modification of eutectic Si and ${\beta}$ intermetallic compound were conducted to improve the mechanical properties of Al-Si-Cu alloy. Modification of eutectic Si and dissolution of needle-shape ${\beta}$ intermetallic compounds were possible by nonequilibrium heat treatment in which specimens were held at $505^{\circ}C$ for 2 hours in Al-Si-Cu alloy with Fe. Owing to the decrease in aspect ratio of eutectic Si by the heat treatment of the alloy with 0.33wt.% Fe, the increase in elongation was prominent to be more than double that in the as-cast specimen. Dissolution of needle-shape ${\beta}$ intermetallic compounds in the alloy with 0.85wt.% Fe led to the improvement of tensile strength as the length of ${\beta}$ compounds decreased to 50%.

  • PDF

알루미늄 B390합금의 조직미세화에 미치는 Ca의 영향 (Effects of Ca on the Refinement of Microstructure in Aluminum B390 Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제22권5호
    • /
    • pp.257-264
    • /
    • 2002
  • Effects of Ca content on the refinement of primary Si of Aluminum B390 alloy have been examined. Ca was found to have an effect on the refinement of primary Si particle. Primary Si particle size has been refined as Ca content of the melts decreased and cooling rate increased. A control of Ca content by the addition of $CuCl_2$ to the melt was the most efficient in the refinement of primary Si particles. The minimum size of primary Si particles in this study was $15.0\;{\mu}m$ when a residual content of Ca element in the alloy was 5ppm, Primary Si particle size was refined as primary Si crystallization temperature increased, which was attributed to the decrease of Ca content in the melts.

자동차 전장모듈용 Sn-Cu-Cr(Ca) 중온 솔더의 접합특성 연구 (Joint Property of Sn-Cu-Cr(Ca) Middle Temperature Solder for Automotive Electronic Module)

  • 방정환;유동열;고용호;김정한;이창우
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.54-58
    • /
    • 2013
  • Joint properties of vehicle ECU (Electric Control Unit) module which was manufactured by using Sn-Cu-Cr-Ca alloy were investigated. A new solder which has a middle melting temperature about $231^{\circ}C$ was fabricated as the type of 300um solder ball and paste type. The prototype modules were made by reflow process and measured spreadability, wettability shear strength and estimated interface reaction. The spreadability of the alloy was about 84% from the measurement of contact angle of the solder ball and the wetting force was measured 2mN. The average shear strength of the module which was manufactured by using the solder paste, was 1.9 $kg/mm^2$. Also, the thickness of IMC(intermetallic compound) was evaluated with various aging temperature and time in order to understand Cr effect on Sn-0.7Cu solder. $Cu_6Sn_5$ IMC was formed between Cu pad and the solder alloy and the average thickness of the $Cu_6Sn_5$ IMC was measured about 4um and it was about 50% of thickness of $Cu_6Sn_5$ IMC in Sn-0.7Cu. It is expected to have a positive effect on reliability of the solder joint.

반응고 성형법에 의해 제조된 고효율 전동기용 Cu-Rotor의 미세조직 및 결함 분석 (Analysis of Microstructures and Defects of the Thixoformed Cu rotor for High Efficiency Electrical Motors)

  • 강병무;서동우;손근용;이상용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.55-59
    • /
    • 2003
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve efficiency of induction motors, however, it is desirable that pure aluminum is replaced by high electrical conductivity copper alloy. For this purpose, a rotor is thixoformed with Cu-Ca alloy. Thermomechanical processing(TMP) is carried out to modify the semi-solid microstructure of the alloy and final microstructures and filling defects of thixoformed Cu- rotors are investigated. The characteristics of thixoformed Cu-rotor such as motor efficiency and torque are compared with those of Al rotor.

  • PDF