• Title/Summary/Keyword: Cu diffusion barrier

Search Result 142, Processing Time 0.031 seconds

Synthesis and Characterization of The Electrolessly Deposited Co(Re,P) Film for Cu Capping Layer (무전해 도금법으로 제조된 Co(Re,P) capping layer제조 및 특성 평가)

  • Han, Won-Kyu;Kim, So-Jin;Ju, Jeong-Woon;Cho, Jin-Ki;Kim, Jae-Hong;Yeom, Seung-Jin;Kwak, Noh-Jung;Kim, Jin-Woong;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • Electrolessly deposited Co (Re,P) was investigated as a possible capping layer for Cu wires. 50 nm Co (Re,P) films were deposited on Cu/Ti-coated silicon wafers which acted as a catalytic seed and an adhesion layer, respectively. To obtain the optimized bath composition, electroless deposition was studied through an electrochemical approach via a linear sweep voltammetry analysis. The results of using this method showed that the best deposition conditions were a $CoSO_4$ concentration of 0.082 mol/l, a solution pH of 9, a $KReO_4$ concentration of 0.0003 mol/l and sodium hypophosphite concentration of 0.1 mol/L at $80^{\circ}C$. The thermal stability of the Co (Re,P) layer as a barrier preventing Cu was evaluated using Auger electron spectroscopy and a Scanning calorimeter. The measurement results showed that Re impurities stabilized the h.c.p. phase up to $550^{\circ}C$ and that the Co (Re,P) film efficiently blocked Cu diffusion under an annealing temperature of $400^{\circ}C$ for 1hr. The good barrier properties that were observed can be explained by the nano-sized grains along with the blocking effect of the impurities at the fast diffusion path of the grain boundaries. The transformation temperature from the amorphous to crystal structure is increased by doping the Re.

Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature (스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성)

  • Choi, Yeon-Bong;Kim, Ji-Won;Jo, Soon-Chul;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.226-230
    • /
    • 2005
  • In this research, magnetic properties and annealing effects of the spin valve structures were investigated, which have Ta underlayer deposited with Ar and $N_2$ gas mixture. Also, TaN underlayer as a diffusion barrier and the substrate were investigated. The structure of the spin valve was Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta. Deposition rate was decreased and resistivity and roughness of the TaN films were increased as the $N_2$ gas flow was increased. The XRD results after high temperature annealing showed that Silicides were created in Si/Ta layer, but not in Si/TaN layer. Magnetoresistance ratio (MR) and exchange coupling field ($H_{ex}$) were decreased when the $N_2$ gas flow was increased over 4.0 sccm. The MR of the spin valves with Ta and TaN films deposited with up to 4.0 sccm of $N_2$ gas flow was increased about $0.5\%$ until the annealing temperature of up to $200^{\circ}C$ and then, decreased. TaN film deposited with 8.0 sccm of $N_2$ gas flow showed twice the adhesion of the Ta film. The above results indicate that with 3.0 sccm of $N_2$ gas flow during the Ta underlayer deposition, the magnetic properties of the spin valves are maintained, while the underlayer may be used as a diffusion barrier and the adhesion between the Si substrate and the underlayer is increased.

Effects of Nano-sized Diamond on Wettability and Interfacial Reaction for Immersion Sn Plating

  • Yu, A-Mi;Kang, Nam-Hyun;Lee, Kang;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.59-63
    • /
    • 2010
  • Immersion Sn plating was produced on Cu foil by distributing nano-sized diamonds (ND). The ND distributed on the coating surface broke the continuity of Sn-oxide layer, therefore leading to penetrate the molten solder through the oxide and retarding the wettability degradation during a reflow process. Furthermore, the ND in the Sn coating played a role of diffusion barrier for Sn atoms and decreased the growth rate of intermetallic compound ($Cu_6Sn_5$) layer during the solid-state aging. The study confirmed the importance of ND to improve the wettability and reliability of the Sn plating. Complete dispersion of the ND within the immersion Sn plating needs to be further developed for the electronic packaging applications.

The Research of Solar Cells Applying Ni/Cu/Ag Contact for Low Cost & High Efficiency (태양전지의 저가격.고효율화를 위한 Ni/Cu/Ag 전극에 관한 연구)

  • Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.444-445
    • /
    • 2009
  • The metallic contact system of silicon solar cell must have several properties, such as low contact resistance, easy application and good adhesion. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. Nickel monosilicide(NiSi) has been suggested as a suitable silicide due to its lower resistivity, lower sintering temperature and lower layer stress than $TiSi_2$. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on $0.2\sim0.6\;{\Omega}{\cdot}cm$, $20\;\times\;20\;mm^2$, CZ(Czochralski) wafer.

  • PDF

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.

Thermal Stability of W-C-N Diffusion Barrier Deposited by RF Magnetron Sputtering Method (RF Magnetron Sputtering 방식으로 증착된 W-C-N 확산방지막의 열적 안정성 분석)

  • Yoo, Sang-Chul;Kim, Soo-In;Lee, Chang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.156-157
    • /
    • 2008
  • 반도체 소자 회로의 집적도가 높아짐에 따라 선폭이 감소하였고 고온 공정이 필요하게 되었다. 기존의 반도체 회로 배선 재료인 Al을 사용할 경우 소자의 속도가 느려져서 소자의 신뢰도가 떨어지고 고온공정에서의 문제가 발생되어 이를 해결하기 위한 차세대 배선 물질로 비저항이 낮은 Cu의 사용이 요구되고 있다. 하지만 Cu는 Si와의 확산이 잘 일어나기 때문에 그 사이에서 확산을 막아주는 확산방지막에 대한 필요성이 제기되었고 연구가 활발히 진행되고 있다. 본 논문에서는 Cu와 Si사이의 확산을 방지하기 위한 W-C-N 확산방지막을 물리적 기상 증착법(PVD)중 하나인 RF Magnetron Sputtering 방식을 사용하여 증착하였다. 고온 공정에서의 안정성을 알아보기 위해 $600^{\circ}C$ 부터 $900^{\circ}C$ 까지 $100^{\circ}C$ 단위로 열처리를 하였고 4-point probe 장치를 사용하여 열처리 온도에 따른 비저항 측정을 통해 W-C-N 확산방지막의 특성을 분석하였다.

  • PDF

Effect of chemical in post Ru CMP Cleaning solutions on abrasive particle adhesion and removal (Post Ru CMP Cleaning에서 연마입자의 흡착과 제거에 대한 chemical의 첨가제에 따른 영향)

  • Kim, In-Kwon;Kim, Tae-Gon;Cho, Byung-Gwun;Son, Il-Ryong;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.529-529
    • /
    • 2007
  • Ruthenium (Ru) is a white metal and belongs to platinum group which is very stable chemically and has a high work function. It has been widely studied to apply Ru as an electrode material in memory devices and a Cu diffusion barrier metal for Cu interconnection due to good electrical conductivity and adhesion property to Cu layer. To planarize deposited Ru layer, chemical mechanical planarization(CMP) was suggested. However, abrasive particle can induce particle contamination on the Ru layer surface during CMP process. In this study, zeta potentials of Ru and interaction force of alumina particles with Ru substrate were measured as a function of pH. The etch rate and oxidation behavior were measured as a function of chemical concentration of several organic acids and other acidic and alkaline chemicals. PRE (particle removal efficiency) was also evaluated in cleaning chemical.

  • PDF

Effect of Reflow Variables on the Characteristic of BGA Soldering (리플로 공정변수가 BGA 솔더링 특성에 미치는 영향)

  • 한현주;박재용;정재필;강춘식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.9-18
    • /
    • 1999
  • In this study, Metallugical properties between Sn-3.5Ag, Sn-37Pb eutectic solders and Au/Ni/cu substrate according to time span above the melting point were investigated. A conventional reflow soldering machine wert used for this study and time span above the melting point was determined by changing peak soldering temperature and conveyor speed. As results, scallop type intermetallic compounds of $Ni_3Sn_4$ were formed at joint interface and no Cu-Sn compounds were found at all; Ni layer performed as a barrier for Cu diffusion. As the peak soldering temperature increased, thickness of the intermetallic compound layer increased; maximum thickness of the scallop-layer was 2.2$\mu\textrm{m}$. The shape of scallops were transformed from hemi-sphere type to elliptical shape with smaller size. Micro-hardness of the solder joint decreased as the eutectic structure of Sn-3.5Ag and Sn-37Pb increased.

  • PDF

Cu Metallization for Giga Level Devices Using Electrodeposition (전해 도금을 이용한 기가급 소자용 구리배선 공정)

  • Kim, Soo-Kil;Kang, Min-Cheol;Koo, Hyo-Chol;Cho, Sung-Ki;Kim, Jae-Jeong;Yeo, Jong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.94-103
    • /
    • 2007
  • The transition of interconnection metal from aluminum alloy to copper has been introduced to meet the requirements of high speed, ultra-large scale integration, and high reliability of the semiconductor device. Since copper, which has low electrical resistivity and high resistance to degradation, has different electrical and material characteristics compared to aluminum alloy, new related materials and processes are needed to successfully fabricate the copper interconnection. In this review, some important factors of multilevel copper damascene process have been surveyed such as diffusion barrier, seed layer, organic additives for bottom-up electro/electroless deposition, chemical mechanical polishing, and capping layer to introduce the related issues and recent research trends on them.

A parameter study on the pre-heat treatment for the fabrication of a large grain YBCO bulk superconductor without intermediate grinding step

  • Hong, Yi-Seul;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • This is a parameter study for the direct fabrication of a large grain YBCO bulk superconductors using Y2O3, BaCO3 and CuO powders without any grinding step. The cracks, which have been formed due to volume contraction during calcination step, have been prevented by controlling the heating rate at 930~950 ℃. It has been observed that multi-grain growth has occurred due to the dissolution of Sm123 seed due to the retention of carbon in Ba-Cu-O melt. In order to accelerate the carbon release in prior calcination heat treatment, the reduction of pellet thickness and the drilling of artificial holes have been applied. Single-grain YBCO bulk superconductor has been successfully fabricated by stacking multiple thin slab. However, the crack formation has been rather prominent for the compact with artificial holes. The use of buffer pellet, which is supposed to act as diffusion barrier, has prevented the dissolution of Sm123 seed crystal and has led to the growth of single grain of high content of carbon containing specimen.