• 제목/요약/키워드: Cu defect

검색결과 104건 처리시간 0.022초

Effects of Nitrogen Defect on Magnetism of Cu-doped InN: First-principles Calculations

  • Kang, Byung-Sub;Chae, Kwang-Pyo;Lee, Haeng-Ki
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.81-85
    • /
    • 2013
  • We investigate the electronic and magnetic properties in Cu-doped InN with the N vacancy ($V_N$) from first principles calculations. There is the long-range ferromagnetic order between two Cu atoms, attributed to the hole-mediated double exchange through the strong p-d interaction between the Cu atom and neighboring N atom. The system of $V_N$ defect in Cu-doped InN has the lowest formation energy. Due to the hybridization between the Cu-3d and $V_N$ states, the spin-polarization on the Cu atoms in the InN lattice is reduced by $V_N$ defect. So, it shows a weak ferromagnetic behavior.

Deep Learning-Based Defect Detection in Cu-Cu Bonding Processes

  • DaBin Na;JiMin Gu;JiMin Park;YunSeok Song;JiHun Moon;Sangyul Ha;SangJeen Hong
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.135-142
    • /
    • 2024
  • Cu-Cu bonding, one of the key technologies in advanced packaging, enhances semiconductor chip performance, miniaturization, and energy efficiency by facilitating rapid data transfer and low power consumption. However, the quality of the interface bonding can significantly impact overall bond quality, necessitating strategies to quickly detect and classify in-process defects. This study presents a methodology for detecting defects in wafer junction areas from Scanning Acoustic Microscopy images using a ResNet-50 based deep learning model. Additionally, the use of the defect map is proposed to rapidly inspect and categorize defects occurring during the Cu-Cu bonding process, thereby improving yield and productivity in semiconductor manufacturing.

  • PDF

Effect on N Defect in Cu-doped III-nitride Semiconductors

  • Kang, Byung-Sub;Lee, Jae-Kwang;Lim, Yong-Sik;Song, Kie-Moon;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.332-336
    • /
    • 2011
  • We studied the effect on the electronic and magnetic properties of the N defect in clean and Cu-doped wurtzite III-nitrides by using the first-principles calculations. When it is doped two Cu atoms in the nearest neighboring sites, the system of AlN, GaN, or InN with the N vacancy is energetically more favorable than that without the N vacancy site. When the Cu concentration increases, the total magnetic moment of a supercell becomes small. The ferromagnetism of Cu atom is very low due to the weak 3d-3d coupling. It is noticeable that the spin-exchange interaction between the Cu-3d and N defect states is important.

강과 스테인레스강 brazing 부의 전단 강도에 미치는 Sn, P의 영향 연구 (Effect of Sn and P on the shear strength of copper to stainless steel brazed joint)

  • 정재필;이보영;강춘식
    • Journal of Welding and Joining
    • /
    • 제7권3호
    • /
    • pp.36-43
    • /
    • 1989
  • The furnace brazing in a Ar of copper to martensitic stainless steel(13.5Cr) using Cu-(5~8%)P-(0~8%)Sn powders was investigated. Shear strength, wettability, reacted layer, defect ratio at the stainless steel interface was evaluated. As Sn was added to the Cu-P powders, defect ratio and P content at the stainless steel interface decreased. And also as Sn was added, defect form at the stainless steel interface changed from the continuous layer to the discrete type, and shear strength of the brazed joint increased.

  • PDF

ACPEL용 ZnS:Cu 청색 형광체의 인위적 결함 형성에 따른 결정 상 변화 및 EL 특성 (Characteristics on EL Properties and Phase Transformation Caused by Artificial Defects on the ZnS:Cu Blue Phosphor for ACPEL)

  • 이명진;전애경;이지영;윤기현
    • 한국세라믹학회지
    • /
    • 제41권5호
    • /
    • pp.406-409
    • /
    • 2004
  • 교류 구동 분산형 EL(ACPEL)에 사용되는 ZnS:Cu 청색 형광체를 고상 반응법으로 제조하였다. 1차 소성 후 인위적 결함을 형광체 표면에 도입함으로서 2차 소성 중에 의해 일어나는 ZnS의 상전이 및 EL 발광 휘도에 미치는 영향을 연구하였다. 즉 1차 소성된 형광체를 ball-mill 공정에서 인위적으로 표면에 defect를 형성시켜 ZnS의 저온상인 cubic으로의 전이가 용이하게 하여 EL구동하에서 발광 휘도를 증가시켰다. Ball-mill의 공정 변수로는 milling 시간과 rpm 등을 고려하여 각 조건에 따른 효과를 고찰하였으며, 발광 spectrum을 측정한 결과, 최적 조건에서 인위적인 결함을 형성하지 않은 형광체 보다 발광 휘도가 약 30% 이상 증가하였다. 또한 각기 다른 ball-mill 조건으로 합성된 형광체의 결정상을 분석하고 비교하였으며 상전이 특성에 따른 발광 휘도 변화를 고찰하였다.

Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Han, Gyuho;Lee, Ji Won;Kim, JunHo
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1794-1798
    • /
    • 2018
  • We have grown famatinite $Cu_3SbS_4$ films by using sulfurization of Cu/Sb stack film. Sulfurization at $500^{\circ}C$ produced famatinite $Cu_3SbS_4$ phase, while $400^{\circ}C$ and $450^{\circ}C$ sulfurization exhibited unreacted and mixed phases. The fabricated $Cu_3SbS_4$ film showed S-deficiency, and secondary phase of $Cu_{12}Sb_4S_{13}$. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/$Cu_3SbS_4$/Mo/glass, where $Cu_3SbS_4$ was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of $Cu_3SbS_4$ absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to $Cu_{12}Sb_4S_{13}$ phase). Thus in order to improve the cell efficiency, it is required to grow high quality $Cu_3SbS_4$ film with no S-deficiency and no secondary phase.

Overburden 억제와 무결함 Deep Via Cu Fill 도금을 위한 전류조건의 영향 (The effects of current conditions on the defect free deep via fill with reduced overburden)

  • 임은정;김태호;변정수;김태호;원경아;남효승
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.27-27
    • /
    • 2007
  • Cu via fill 도금 시, void, seam과 같은 내부 defects는 공정 중 신뢰성을 떨어뜨리며, 전기신호 전달속도를 느리게 한다. 또한 Cu via fell 도금 공정 중 발생하는 과도한 Cu 표면 도금층은 wafer thenning 공정의 생산성 저하와 공정 비용 상승을 유발한다. 3D Interconnection용 직경 30${\mu}$m, 깊이 120${\mu}$m (Aspect Ratio : 4) Via를 이용하여 정류방법, 전류 parameter, 첨가제 조성에 따른 Cu via felling 특성과 overburden두께 변화를 실험적으로 검증하였다.

  • PDF

$CuIn_3Se_5$ 박막의 성장과 특성 (Growth and Characterization of $CuIn_3Se_5$ Thin Film)

  • 김창대
    • 한국진공학회지
    • /
    • 제3권2호
    • /
    • pp.203-206
    • /
    • 1994
  • 동시증착법으로 성장한 CuIn3Se5 박막의 구조 및 광학적 특성을 XRD, SEM 광투과 및 광반사 측정으로부터 조사하였다. XRD 측정에 의하면 CuIn3Se5 는 정열된 Cu 빈자리와 Cuqls자리에 in으로 대 치되는 defect chalcopyrite 구조임이 확인디었다. 또한 광흡수 측정으로부터 CuIn3Se5 는 금지대내에서 직접 전이에 의한 광흡수 특성을 보여주며 이때 에너지띠 간격은 1.27ev 이었다. CuIn3Se5 박막에 대한 연구결과들은 CuInSe2 의 결과들과 비교하여 논의하였다.

  • PDF

The synthesis and properties of point defect structure of Cu2-XZnSnS4 (x=0.1, 0.2, and 0.3)

  • Bui D. Long;Le T. Bang
    • Advances in materials Research
    • /
    • 제13권1호
    • /
    • pp.55-62
    • /
    • 2024
  • Cu-based sulfides have recently emerged as promising thermoelectric (TE) materials due to their low cost, non-toxicity, and abundance. In this research, point defect structure of Cu2-xZnSnS4 (x=0.1, 0.2, 0.3) samples were synthesized by the mechanical alloying method. Mixed powders of Cu, Zn, Sn and S were milled using high energy ball milling at a rotation speed of 300 rpm in Ar atmosphere. The milled Cu2-xZnSnS4 powders were heat-treated at 723 K for 24 h, and subsequently consolidated using spark plasma sintering (SPS) under an applied pressure of 60 MPa for 15 min. The thermal conductivity of the sintered Cu2-xZnSnS4 samples was evaluated. A well-defined Cu2-xZnSnS4 powders were successfully formed after milling for 16 h, with the particle sizes mostly distributed in the range of 60-100 nm. The lattice constants of aand cdecreased with increasing composition value x. The thermal conductivity of sintered x=0.1 sample exhibited the lowest value and attained 0.93 W/m K at 673 K.

Identifying and quantitating defects on chemical vapor deposition grown graphene layers by selected electrochemical deposition of Au nanoparticles

  • So, Hye-Mi;Mun, Jeong-Hun;Bang, Gyeong-Sook;Kim, Taek-Yong;Cho, Byung-Jin;Ahn, Chi-Won
    • Carbon letters
    • /
    • 제13권1호
    • /
    • pp.56-59
    • /
    • 2012
  • The defect sites on chemical vapor deposition grown graphene are investigated through the selective electrochemical deposition (SED) of Au nanoparticles. For SED of Au nanoparticles, an engineered potential pulse is applied to the working electrode versus the reference electrode, thereby highlighting the defect sites, which are more reactive relative to the pristine surface. Most defect sites decorated by Au nanoparticles are situated along the Cu grain boundaries, implying that the origin of the defects lies in the synthesis of uneven graphene layers on the rough Cu surface.