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Abstract — The structural and optical properties of Culn;Se; thin films grown by co-evaporation
have been investigated by XRD, SEM, transmission and reflectance measurements. It is confirmed
from the XRD measurements that Culn;Ses crystallizes in a defect chalcopyrite structure with orde-
red Cu vacancies and an ordered exchange of Cu with In. The absorption characteristics support
that the compound has a direct bandgap. The energy gap of Culn;Se; is found to be 1.27 eV at
room temperature. The results of Culn,Se; thin films are discussed in comparison with those of
CulnSe; thin films.
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1. INTRODUCTION

CulnSe; has attracted considerable attention be-
cause it is a promising material for high-efficiency
photovoltaic devices due to its desirable band gap
(E;~1.0eV) and relatively high absorption coeffi-
cient (@=10*~10°cm Y [1]. Recently a conversion
efficiency of up to 14.8% has been achieved in
CulnSe;-based solar cells [2]. For further optimi-
zation of solar cell design, a better understanding
of various phases in the Cu-rich and In-rich com-
position as well as CulnSe, is necessary. A number
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of single phase compounds, i.e, Culn,Sess [3-5],
CuslnsSey [6-8], CulnsSes [5,9-111, CusInSeq [5,
12] and CulnsSes [13] have been reported in the
Cu.Se-In,Se; pseudo-binary phase studies. Among
them the compound CulnzSes; appears to be one
of the most important heterojunction partner of
CulnSe; because of the perfect matching of the lat-
tice between two materials [14]. However, a syste-
matic investigation on the physical properties of
Culn;Ses has not been made up to date. In view
of a literature survey [15] of the compound, there
exists the discrepancy concerning its structure and
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Fig. 1. Vacuum thin film co-evaporation system.

homogeneity range.

In this paper we report the structural and optical
properties of Culn,;Ses thin films using X-ray diffra-
ction (XRD), scanning electron microscopy (SEM),
optical transmission and reflection measurements.
The results are also discussed in comparison with
CulnSe,.

Culn;Ses and CulnSe, thin films were prepared
by vacuum thermal evaporation of the constituent
elements onto heated 1 in. X2 in. substrates of bare
and Mo-coated glass using the co-evaporation sys-
tem of Fig. 1. The Cu and In arrival rates are moni-
tored and controlled to within 0.05 A/s by a Sentinel
200 deposition control system utilizing electron im-
pact emission spectroscopy (EIES) as the detection
mechanism for feedback to the source power supp-
lies. The Se flux and Cu/In calibrations are accomp-
lished with a quartz crystal monitoring(QCM) tech-
nology. Actual substrate surface temperature of 500
T was assured by calibration. Two film thicknesses
of the same composition were obtained from a si-
ngle run by shielding half of the substrate during
the deposition. The film thickness ranged from 0.5
um for optical measurements to 1.0 um for structu-
ral characterization. Film thickness determination
is accomplished by a Tencor Profilometer with
auto-leveling features. XRD measurements were
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Fig. 2. XRD patterns of CulnsSes thin films grown on
bare and Mo-coated glass and CulnSe; thin
films grown on bare glass.

made with Rigaku DMAX vertical goniometer and
controller system with a rotating Cu-anode X-ray
generator and tungsten filament. Composition dete-
rmination was accomplished by EPMA and the co-
mposition of the films grown was measured to be
Cu=10.38 at%, In=33.97 at% and Se=55.65 at%,
i.e, slightly In-rich and Se-rich relative to the com-
position 1:3:5.

Optical measurements are performed with a 5240
Beckman spectrophotometer in the wavelength ra-
nge 800~2000 nm, with an integrating sphere to
measure diffuse and total reflectance, Ry & Ry,
and scattered and total transmission, Teat & T
Reflectance measurements are normalized to the
absolute reflectance of a BaSO, plate.

Fig. 2 shows the XRD patterns of Culn;Se; films
grown on bare and Mo-coated glass in comparison
with those of CulnSe,. In the XRD patterns of
Culn;Ses films the only differences between the two
substrates, other than the Mo peak (26=40.50), is
a possible orientation for the films grown on bare
and Mo-coated glass. Comparing the XRD patterns
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Table 1. XRD data of CulnsSes and CulnSe

CulnSe, Culn;Ses
hkl — A(20)
20 db)y L 20 di) g
002 - - - 15.35 b5.768 2 -
101 1712 5179 5 1725 5.136 5 +.13
10 - - ~ 2190 4005 3 -

116 5224 1.750 12 5280 1732 11  +.56
312 5240 1745 24 s > z  +40

6029 153¢ 1 +.59
6479 1438 1 +.70
400 6438 1446 6 - o+ o +4l
402 6659 1403 <1 6715 1393 2 +.56

Fig. 3. SEM X-sectional micrographs of Culn;Ses thin
films grown on bare glass.

of Culn;Se; with those of CulnSe;, the XRD patterns
of CulnsSes are very similar to those of CulnSe,
with the chalcopyrite structure and only three addi-
tional peaks with weak peaks at 26=15.35, 21.90
and 38.35 are observed. These are compatible with
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Fig. 4. Absorption coefficient a vs incident photon
energy for two thin films of Culn;Se; and
CulnSe;.

(002), (110) and (114) lattice planes of Culn,Sess
[4, 16], respectively. The occurence of the additio-
nal peaks is explained by ordered Cu vacancies and
an ordered exchange of Cu with In [16). Thus it
is belived that CulnsSe;s crystallizes in a defect chal-
copyrite structure. The lattice constants of Culn;Ses,
obtained from the XRD data, are found to be a=
5.764 A and ¢=11.528 A without any obserable tet-
ragonal distortion, but which are slightly smaller
than @=5.780 A and c=11.614 A of CulnSe;. In
Table 1, the XRD data are summarized for both
CulnsSes and CulnSe,. The shifts in d-spacings (20)
due to the lattice shrinkage are observed in CulnsSes.
Such shifts are also observed when the composition
is changed from Cu-rich to In-rich and the subst-
rate temperature is varied from 350C to 500C in
CulnSe; [16]. In Fig. 3 SEM X-sectional morpho-
logy of thin film CulnsSes is shown. The grain size
for the films is about 1.0 um and the film roughness
is smooth.

Fig. 4 depicts the optical absorption coefficient,
@, as a function of the photon energy kv, of CulnsSe;
thin films. It was calculated from the measurements
of diffuse and total reflection, Rsx & Ry, and scatte-
red and total transmission, T & Tir. As can be
seen in Fig. 4, the magnitude of the absorption coef-
ficient above the fundamental band edge of the
Culn;Se; films is about 10* cm™*, which is slightly
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Fig. 5. Plots of (a-Av)* vs photon energy for two thin
films of Culn;Se; and CulnSe,.

smaller than that of the CulnSe, films. It is also
observed that there is a decrease in o with In con-
centration for In-rich CulnSe; [17]. The absorption
edge, even in this high o regime, is observed to
be quite abrupt for the Culn;Se; as well as for the
CulnSe, with a direct band gap. The fundamental
absorption, which manifests itself by a rapid rise
in absorption, can be used to determine the energy
gap of the compounds.

In allowed direct transitions the absorption coef-
ficient is given by

a-hv=A(hv—E,)" o)

where A is a constant and E, is the energy gap.
Therefore, for a direct band gap semiconductor, the
(a*hv)® vs hv characteristics is predicted to be a
straight line, with a photonenergy axis intercept in-
dicative of the band gap. This is illustrated in Fig.
5. Extrapolation of (a*hv)?=0 in Fig. 5 indicates
the direct band gap of 1.27 eV for the Culn;Se; films
and 0.96 eV for the CulnSe;, films, respectively.
In summary, thin films of Culn;Ses and CulnSe,
have been grown by co-evaporation and the struc-
tural and optical properties of these films have been
determined. The compound Culn;Se; crystallizes in
a defect chalcopyrite structure with ordered Cu va-
cancies and an ordered exchange of Cu with In.
The absorption characteristics confirm that CulnsSes
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has a direct band gap. The energy gap deduced
from these measurements is about 1.27 eV for Culns

Ses films and 0.96 eV for CulnSe; films.
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