DOI QR코드

DOI QR Code

Identifying and quantitating defects on chemical vapor deposition grown graphene layers by selected electrochemical deposition of Au nanoparticles

  • So, Hye-Mi (National Nanofab Center) ;
  • Mun, Jeong-Hun (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Bang, Gyeong-Sook (National Nanofab Center) ;
  • Kim, Taek-Yong (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Cho, Byung-Jin (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Chi-Won (National Nanofab Center)
  • Received : 2011.09.05
  • Accepted : 2011.12.10
  • Published : 2012.01.31

Abstract

The defect sites on chemical vapor deposition grown graphene are investigated through the selective electrochemical deposition (SED) of Au nanoparticles. For SED of Au nanoparticles, an engineered potential pulse is applied to the working electrode versus the reference electrode, thereby highlighting the defect sites, which are more reactive relative to the pristine surface. Most defect sites decorated by Au nanoparticles are situated along the Cu grain boundaries, implying that the origin of the defects lies in the synthesis of uneven graphene layers on the rough Cu surface.

Keywords

References

  1. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.
  2. Virojanadara C, Syväjarvi M, Yakimova R, Johansson LI, Zakharov AA, Balasubramanian T. Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys Rev B, 78, 245403 (2008). http://dx.doi.org/10.1103/PhysRevB.78.245403.
  3. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382.
  4. Obraztsov AN, Obraztsova EA, Tyurnina AV, Zolotukhin AA. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45, 2017 (2007). http://dx.doi.org/10.1016/j.carbon.2007.05.028.
  5. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585.
  6. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Jing K. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v.
  7. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  8. Kang BJ, Mun JH, Hwang CY, Cho BJ. Monolayer graphene growth on sputtered thin film platinum. J Appl Phys, 106, 104309 (2009). http://dx.doi.org/10.1063/1.3254193.
  9. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.
  10. Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878.
  11. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnol, 3, 538 (2008). http://dx.doi.org/10.1038/nnano.2008.210.
  12. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol, 3, 270 (2008). http://dx.doi.org/10.1038/nnano.2008.83.
  13. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451.
  14. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.
  15. Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition. Science, 290, 2120 (2000). http://dx.doi.org/10.1126/science.290.5499.2120.
  16. Penner RM. Mesoscopic metal particles and wires by electrodeposition. J Phys Chem B, 106, 3339 (2002). http://dx.doi.org/10.1021/jp013219o.
  17. Walter EC, Zach MP, Favier F, Murray BJ, Inazu K, Hemminger JC, Penner RM. Metal nanowire arrays by electrodeposition. Chem Phys Chem, 4, 131 (2003). http://dx.doi.org/10.1002/cphc.200390022.
  18. Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edgeplane sites and tube ends are the reactive sites. Chem Commun, 7, 829 (2005). http://dx.doi.org/10.1039/b413177k.
  19. Fan Y, Goldsmith BR, Collins PG. Identifying and counting point defects in carbon nanotubes. Nature Mater, 4, 906 (2005). http://dx.doi.org/10.1038/nmat1516.
  20. Mubeen S, Zhang T, Chartuprayoon N, Rheem Y, Mulchandani A, Myung NV, Deshusses MA. Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. Anal Chem, 82, 250 (2010). http://dx.doi.org/10.1021/ac901871d.
  21. Kim YT, Han JH, Hong BH, Kwon YU. Electrochemical Synthesis of CdSe quantum-Dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Adv Mater, 22, 515 (2010). http://dx.doi.org/10.1002/adma.200902736.