• Title/Summary/Keyword: Cu Reflow

Search Result 133, Processing Time 0.024 seconds

A Study on the Eutectic Pb/Sn Solder Filip Chip Bump and Its Under Bump metallurgy(UBM)

  • Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1998
  • In the flip chip interconnection on organic substrates using eutectic Pb/Sn solder bumps highly reliable Under Bump Metallurgy (UBM) is required to maintain adhesion and solder wettability. Various UBM systems such as 1$\mu$m Al/0.2$\mu$m Pd/1$\mu$m Cu, laid under eutectic Pb/Sn solder were investigated with regard to their interfacial reactions and adhesion proper-ties. The effects of numbers of solder reflow and aging time on the growth of intermetallic compounds (IMCs) and on the solder ball shear strength were investigated. Good ball shear strength was obtained with 1$\mu$m Al/0.2$\mu$m Ti/5$\mu$m Cu and 1$\mu$m Al/0.2$\mu$m ni/1$\mu$m Cu even after 4 solder reflows or 7 day aging at 15$0^{\circ}C$. In contrast 1$\mu$m Al/0.2$\mu$m Ti/1$\mu$m Cu and 1$\mu$mAl/0.2$\mu$m Pd/1$\mu$m 쳐 show poor ball shear strength. The decrease of the shear strength was mainly due to the direct contact between solder and nonwettable metal such as Ti and Al resulting in a delamination. In this case thin 1$\mu$m Cu and 0.2$\mu$m Pd diffusion barrier layer were completely consumed by Cu-Sn and pd-Sn reaction.

Activation Energy for Intermetallic Compound Formation of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu Solder Joints (Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 솔더 접합계면의 금속간화합물 형성에 필요한 활성화에너지)

  • Hong, Won-Sik;Kim, Whee-Sung;Park, Noh-Chang;Kim, Kwang-Bae
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • Sn-3.0Ag-0.5Cu lead fee solder was generally utilized in electronics assemblies. But it is insufficient to research about activation energy(Q) that is applying to evaluate the solder joint reliability of environmental friendly electronics assemblies. Therefore this study investigated Q values which are needed to IMC formation and growth of Sn-3.0Ag-0.5Cu/Cu and Sn-40pb/Cu solder joints during aging treatment. We bonded Sn-3.0Ag-0.5Cu and Sn-40Pb solders on FR-4 PCB with Cu pad$(t=80{\mu}m)$. After reflow soldering, to observe the IMC formation and growth of the solder joints, test specimens were aged at 70, 150 and $170^{\circ}C$ for 1, 2, 5, 20, 60, 240, 960, 15840, 28800 and 43200 min, respectively. SEM and EDS were utilized to analysis the IMCS. From these results, we measured the total IMC$(Cu_6Sn_5+Cu_3Sn)$ thickness of Sn-3.0Ag-0.5Cu/Cu and Sn-40Pb/Cu interface, and then obtained Q values for the IMC$(Cu_6Sn_5,\;Cu_3Sn)$ growth of the solder joints.

Intermetallic Formation between Sn-Ag based Solder Bump and Ni Pad in BGA Package (BGA 패키지에서 Sn-Ag계 솔더범프와 Ni pad 사이에 형성된 금속간화합물의 분석)

  • Yang, Seung-Taek;Chung, Yoon;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2002
  • The intermetallic formation between Sn-Ag-(Cu) solders and metal pads in a real BGA package was characterized using SEM, EDS, and XRD. The intermetallic phase formed in the interface between Sn-Ag-Cu and Au/Ni/Cu pad is likely to be ternary compound of $(Cu,Ni)_6Sn_5$ from EDS analysis High concentration of Cu was observed in the solder/Ni interface. XRD analysis confirmed that $\eta -Cu_6 Sn_5$ type was intermetallic phase formed in the interface between Cu containing solders and Ni substrates and $Ni_3$Sn_4$ intermetallic was formed in the Sn-Ag solder/Ni interface. The thickness of intermetallic phase increased with the reflow times and Cu concentration in solder.

  • PDF

Interfacial Reactions of Sn-Ag-Cu solder on Ni-xCu alloy UBMs (Ni-xCu 합금 UBM과 Sn-Ag계 솔더 간의 계면 반응 연구)

  • Han Hun;Yu Jin;Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • Since Pb-free solder alloys have been used extensively in microelectronic packaging industry, the interaction between UBM (Under Bump Metallurgy) and solder is a critical issue because IMC (Intermetallic Compound) at the interface is critical for the adhesion of mechanical and the electrical contact for flip chip bonding. IMC growth must be fast during the reflow process to form stable IMC. Too fast IMC growth, however, is undesirable because it causes the dewetting of UBM and the unstable mechanical stability of thick IMC. UP to now. Ni and Cu are the most popular UBMs because electroplating is lower cost process than thin film deposition in vacuum for Al/Ni(V)/Cu or phased Cr-Cu. The consumption rate and the growth rate of IMC on Ni are lower than those of Cu. In contrast, the wetting of solder bumps on Cu is better than Ni. In addition, the residual stress of Cu is lower than that of Ni. Therefore, the alloy of Cu and Ni could be used as optimum UBM with both advantages of Ni and Cu. In this paper, the interfacial reactions of Sn-3.5Ag-0.7Cu solder on Ni-xCu alloy UBMs were investigated. The UBMs of Ni-Cu alloy were made on Si wafer. Thin Cr film and Cu film were used as adhesion layer and electroplating seed layer, respectively. And then, the solderable layer, Ni-Cu alloy, was deposited on the seed layer by electroplating. The UBM consumption rate and intermetallic growth on Ni-Cu alloy were studied as a function of time and Cu contents. And the IMCs between solder and UBM were analyzed with SEM, EDS, and TEM.

  • PDF

Properties of High Power Flip Chip LED Package with Bonding Materials (접합 소재에 따른 고출력 플립칩 LED 패키지 특성 연구)

  • Lee, Tae-Young;Kim, Mi-Song;Ko, Eun-Soo;Choi, Jong-Hyun;Jang, Myoung-Gi;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Flip chip bonded LED packages possess lower thermal resistance than wire bonded LED packages because of short thermal path. In this study, thermal and bonding properties of flip chip bonded high brightness LED were evaluated for Au-Sn thermo-compression bonded LEDs and Sn-Ag-Cu reflow bonded LEDs. For the Au-Sn thermo-compression bonding, bonding pressure and bonding temperature were 50 N and 300oC, respectively. For the SAC solder reflow bonding, peak temperature was $255^{\circ}C$ for 30 sec. The shear strength of the Au-Sn thermo-compression joint was $3508.5gf/mm^2$ and that of the SAC reflow joint was 5798.5 gf/mm. After the shear test, the fracture occurred at the isolation layer in the LED chip for both Au-Sn and SAC joints. Thermal resistance of Au-Sn sample was lower than that of SAC bonded sample due to the void formation in the SAC solder.

Interconnection Processes Using Cu Vias for MEMS Sensor Packages (Cu 비아를 이용한 MEMS 센서의 스택 패키지용 Interconnection 공정)

  • Park, S.H.;Oh, T.S.;Eum, Y.S.;Moon, J.T.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.63-69
    • /
    • 2007
  • We investigated interconnection processes using Cu vias for MEMS sensor packages. Ag paste layer was formed on a glass substrate and used as a seed layer for electrodeposition of Cu vias after bonding a Si substrate with through-via holes. With applying electrodeposition current densities of $20mA/cm^2\;and\;30mA/cm^2$ at direct current mode to the Ag paste seed-layer, Cu vias of $200{\mu}m$ diameter and $350{\mu}m$ depth were formed successfully without electrodeposition defects. Interconnection processes for MEMS sensor packages could be accomplished with Ti/Cu/Ti line formation, Au pad electrodeposition, Sn solder electrodeposition and reflow process on the Si substrate where Cu vias were formed by Cu electrodeposition into through-via holes.

  • PDF

Thermal Shock Reliability of Low Ag Composition Sn-0.3Ag-0.7Cu and Near Eutectic Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Low Ag 조성의 Sn-0.3Ag-0.7Cu 및 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 열충격 신뢰성)

  • Hong, Won Sik;Oh, Chul Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.842-851
    • /
    • 2009
  • The long-term reliability of Sn-0.3wt%Ag-0.7wt%Cu solder joints was evaluated and compared with Sn-3.0wt%Ag-0.5wt%Cu under thermal shock conditions. Test vehicles were prepared to use Sn-0.3Ag-0.7Cu and Sn-3.0Ag-0.5Cu solder alloys. To compare the shear strength of the solder joints, 0603, 1005, 1608, 2012, 3216 and 4232 multi-layer ceramic chip capacitors were used. A reflow soldering process was utilized in the preparation of the test vehicles involving a FR-4 material-based printed circuit board (PCB). To compare the shear strength degradation following the thermal shock cycles, a thermal shock test was conducted up to 2,000 cycles at temperatures ranging from $-40^{\circ}C$ to $85^{\circ}C$, with a dwell time of 30 min at each temperature. The shear strength of the solder joints of the chip capacitors was measured at every 500 cycles in each case. The intermetallic compounds (IMCs) of the solder joint interfaces werealso analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the reliability of Sn-0.3Ag-0.7Cu solder joints was very close to that of Sn-3.0Ag-0.5Cu. Consequently, it was confirmed that Sn-0.3Ag-0.7Cu solder alloy with a low silver content can be replaced with Sn-3.0Ag-0.5Cu.

Cap Formation Process for MEMS Packages using Cu/Sn Rim Bonding (Cu/Sn Rim 본딩을 이용한 MEMS 패키지의 Cap 형성공정)

  • Kim, S.K.;Oh, T.S.;Moon, J.T.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.31-39
    • /
    • 2008
  • To develop the MEMS cap bonding process without cavity formation, we electroplated Cu/Sn rim structures and measured the bonding characteristics for the Cu/Sn rims of $25{\sim}400{\mu}m$ width. As the effective device-mounting area ratio decreased and the failure strength ratio increased for wider Cu/Sn rim, these two properties were estimated to be optimized for the Cu/Sn rim with 150 ${\mu}m$ width. Complete bonding was accomplished at the whole interfaces of the Cu/Sn packages with the rim widths of 25 ${\mu}m$ and 50 ${\mu}m$. However, voids were observed locally at the interfaces with the rim widths larger than 100 ${\mu}m$. Such voids were formed by local non-contact between the upper and lower rims due to the surface roughness of the electroplated Sn.

  • PDF

A study of joint properties of Sn-Cu-(X)Al(Si) middle-temperature solder for automotive electronics modules (자동차 전장부품을 위한 Sn-0.5Cu-(X)Al(Si) 중온 솔더의 접합특성 연구)

  • Yu, Dong-Yurl;Ko, Yong-Ho;Bang, Junghwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Joint properties of electric control unit (ECU) module using Sn-Cu-(X)Al(Si) lead-free solder alloy were investigated for automotive electronics module. In this study, Sn-0.5Cu-0.01Al(Si) and Sn-0.5Cu-0.03Al(Si) (wt.%) lead-free alloys were fabricated as bar type by doped various weight percentages (0.01 and 0.03 wt.%) of Al(Si) alloy to Sn-0.5Cu. After fabrications of lead-free alloys, the ball-type solder alloys with a diameter of 450 um were made by rolling and punching. The melting temperatures of 0.01Al(Si) and 0.03Al(Si) were 230.2 and $230.8^{\circ}C$, respectively. To evaluation of properties of solder joint, test printed circuit board (PCB) finished with organic solderability perseveration (OSP) on Cu pad. The ball-type solders were attached to test PCB with flux and reflowed for formation of solder joint. The maximum temperature of reflow was $260^{\circ}C$ for 50s above melting temperature. And then, we measured spreadability and shear strength of two Al(Si) solder materials compared to Sn-0.7Cu solder material used in industry. And also, microstructures in solder and intermetallic compounds (IMCs) were observed. Moreover, thickness and grain size of $Cu_6Sn_5$ IMC were measured and then compared with Sn-0.7Cu. With increasing the amounts of Al(Si), the $Cu_6Sn_5$ thickness was decreased. These results show the addition of Al(Si) could suppress IMC growth and improve the reliability of solder joint.

Properties of Cu Pillar Bump Joints during Isothermal Aging (등온 시효 처리에 따른 Cu Pillar Bump 접합부 특성)

  • Eun-Su Jang;Eun-Chae Noh;So-Jeong Na;Jeong-Won Yoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Recently, with the miniaturization and high integration of semiconductor chips, the bump bridge phenomenon caused by fine pitches is drawing attention as a problem. Accordingly, Cu pillar bump, which can minimize the bump bridge phenomenon, is widely applied in the semiconductor package industry for fine pitch applications. When exposed to a high-temperature environment, the thickness of the intermetallic compound (IMC) formed at the joint interface increases, and at the same time, Kirkendall void is formed and grown inside some IMC/Cu and IMC interfaces. Therefore, it is important to control the excessive growth of IMC and the formation and growth of Kirkendall voids because they weaken the mechanical reliability of the joints. Therefore, in this study, isothermal aging evaluation of Cu pillar bump joints with a CS (Cu+ Sn-1.8Ag Solder) structure was performed and the corresponding results was reported.