• Title/Summary/Keyword: Cu,Zn-superoxide dismutase (SOD1)

Search Result 140, Processing Time 0.025 seconds

Effect of Genistein on Activity and Expression of Antioxidant Enzyme in Hamster ovary cells (Genistein이 햄스터 난소세포의 항산화효소활성과 발현에 미치는 영향)

  • Kim, Min-Hye;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • Reactive oxygen species (ROS) are produced in the metabolic process of oxygen in cells. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cells systemize the antioxidant enzymes to control the oxidative stress. Genistein is one of the isoflavonoids, and its role in controlling cellular oxidative stress is presently the active issue at question. In this study; we analyzed genistein-induced survival rates of the CHO-K1 cells, activities of antioxidant enzymes, ROS levels, and expression levels of antioxidant enzyme genes in order to investigate the effect of genistein on cellular ROS production and antioxidative systems in CHO-K1 cells. As results, the survival rate of cells was decreased as the dose of genistein increases (12.5${\sim}$200 ${\mu}$M). Genistein increased cellular ROS levels, while it reduced total SOD activities and the expression of CuZnSOD. In conclusion, we suggest that genistein may induce oxidative stress via down-regulation of SOD.

Effect of 2,4,5-Trichlorobiphenyl (PCB-29) on Oxidative Stress and Activities of Antioxidant Enzymes in Tomato Seedlings

  • Cho, Un-Haing;Sohn, Ji-Young
    • The Korean Journal of Ecology
    • /
    • v.25 no.6
    • /
    • pp.371-377
    • /
    • 2002
  • Leaves of two-week old seedlings of tomato (Lycopersicon esculentum) were treated with various concentrations (0, 0.2 and 0.4 $\mu$g/1) of 2,4,5-trichlorobiphenyl (PCB-29) and subsequent growth of seedlings, symptoms of oxidative stress and activities of antioxidant enzymes were investigated. Compared with the non-treated control, foliar application of PCB-29 decreased both biomass and superoxide ($O_2$) radical production but increased hydrogen peroxide production and lipid peroxidation such as malondialdehyde (MDA) formation with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX). Further studies on the isozymes of SOD, peroxidase (POD) and APX showed that all three isozymes of SOD such as Mn-SOD, Fe-SOD and Cu/Zn-SOD, two among four isozymes of POD and all three isozymes of APX were selectively increased in response to PCB. Therefore, we suggest that a possible cause for the reduction of seedling growth by PCB exposure is the oxidative stress including over production of hydrogen peroxide and the selective expression of specific isozymes of some antioxidant enzymes.

The Protective Effects of Dangguibohyul-tang (Dangguibuxuetang) against Disuse Muscle Atrophy in Rats (흰쥐의 불용성 근위축에 당귀보혈탕이 미치는 영향과 그 기전에 관한 고찰)

  • Kim, Bum Hoi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • Objectives Oxidative stress, in which antioxidant proteins and scavenger protection are overwhelmed by reactive oxygen species (ROS) production, is recognized as one of central causes of disuse muscle atrophy. In this study, the hypothesis that oral treatment with Dangguibohyul-tang (Dangguibuxuetang) could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The hindlimb immobilization was performed with casting tape to keep the left ankle joint in a fully extended position. The Rats in Dangguibohyul-tang treated group (DGBHT) (n=10) were orally administrated Dangguibohyul-tang water extract, and rats of Control group (n=10) were given with saline only. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both DGBHT and Control groups were assessed by hematoxylin and eosin staining. Results Dangguibohyul-tang water extract represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. Moreover, the treatment with Dangguibohyul-tang extract significantly enhanced the Cu/Zn-SOD activities in gastrocnemius muscle compared with Control group. Conclusions Thses results suggest that Dangguibohyul-tang has protective effects against immobilization-induced muscle atrophy by increasing the Cu/Zn-SOD activities in gastrocnemius muscle.

The Effects of Red Ginseng Extracts on Antioxidant Enzyme Activities and Lipid Peroxidation of the Kidney in ${\gamma}$-Postirradiated Mice (감마선 조사전 홍삼추출물 투여가 생쥐 신장에서 항산화 효소활성과 지질과산화 수준에 미치는 영향)

  • 김동조;장재철
    • Journal of Ginseng Research
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 1994
  • The effects of red ginseng extracts (5.5 mg/mouse: i.p.) on the activities of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) and lipid peroxidation were studied in the cytosol fraction of kidney. The experiments were carried out with whole-body irradiated (6.0 Gy, $^{60}Co$) and non-irradiated ICR mice. In the red ginseng extract-treated and irradiated mice, the activities of Cu, Zn- SOD, Mn-SOD, catalase and peroxidase were significantly enhanced by 27.8, 31.9, 17.9 and 15.0%, respectively, but the contents of malondialdehyde were considerably decreased (81.OfS) after 21 days, compared with those of non-treated mice. The enhanced activities of antioxidant enzymes inhibited the increase of malondialdehyde product resulted from the ionizing radiation. These results suggest that red ginseng extracts probably play an important role in radioprotective effect. Key words Red ginseng, SOD, catalase, peroxidase, lipid peroxidation.

  • PDF

Effects of ischemic preconditioning, KATP channel on the SOD activation and apoptosis in ischemic reperfused skeletal muscle of rat (허혈양상화와 KATP 통로가 허혈후 재관류된 흰쥐의 골격근육에서 SOD 활성 및 apoptosis에 미치는 영향)

  • Abn, Dong-choon;Paik, Doo-jin;Yang, Hong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.878-895
    • /
    • 1999
  • Ischemic preconditioing (IPC), i.e., a preliminary brief episode of ischemia and reperfusion, has been shown to reduce the cell damage induced by long ischemia and reperfusion. Superoxide radical which is produced during reperfusion after ischemia was recognized as a factor of the ischemic injury and it is dismutated into $H_2O_2$ and $O_2$ by two types of intracellular superoxide dismutase (SOD), Cu,Zn-SOD in cytoplasm and Mn-SOD in mitochondria. Recently oxygen free radicals are suggested to induce the apoptosis, however mechanism of the reduced apoptosis by ischemic preconditioing was unknown, while many studies performed in mammalian heart indicated that ATP-sensitive $K^+$ ($K_{APT}$) channel activation related with the protective effects. The aim of present study is to investigate 1) whether IP upregulate the Cu,Zn-SOD and Mn-SOD activities, and 2) whether ischemic preconditioning decreases apoptosis via $K_{APT}$ channel activation in timely reperfused skeletal muscle after long ishemia. The experimental animals, Sprague-Dawley rats weighing 250~300g, were divided into 8 groups; 1) control group, 2) ischemic preconditioning only groups, 3) pinacidil, a $K_{APT}$ channel opener, treatment only groups, 4) glibenclamide, a $K_{APT}$ channel blocker, treatment only groups, 5) ischemia groups, 6) ischemia after IPC groups, 7) ischemia and pinacidil treatment groups, and 8) IP and ischemia after glibenclamide pretreatment groups. Animals of the control group were administered with the vehicle (DMSO) alone. Pinacidil (1mg/kg) was administered intravenously 5 minutes after initiation of ischemia, and glibenclamide (0.5mg/kg) was injected intravenously 20 minutes before IPC. In rats that were ischemic preconditioned, the left common iliac artery was occluded for 5 minutes followed by 5 minutes of reperfusion by three times using vascular clamp. Ischemia was done by occlusion of the same artery for 4 hours. The specimens of left rectus femoris muscle were obtained immediately (0 hour), 12 hours, 24 hours after drug administrations, IP or ischemia and reperfusion. The immunoreactivities of SOD and its alterations were observed by use of sheep antihuman Cu,Zn-SOD and Mn-SOD antibodies on the $10{\mu}m$ cryosections. The incidencies of apoptosis were observed by TUNEL methods with in situ apoptosis detection kit on $6{\mu}m$ paraffine section. The results obtained were as follows : 1. After IPC, immunoreactivities of Cu,Zn-SOD mainly in the small-sized fibers were increased by 24 hours, that of Mn-SOD at 0 hour and 24 hours. 2. No significant changes in immunoreactivities of SOD was observed in the pinacidil and in the glibenclamide treatment only groups, and in the ischemia only groups. 3. The immunoreactivities of the Cu,Zn-SOD were increased in the ischemia after IPC groups and the ischemia and pinacidil treatment groups. 4. The immunoreactivities of the Cu,Zn-SOD in the IPC and ischemia after glibenclamide pretreatment groups were not increased except for the 12 hours reperfusion group. But, Mn-SOD immunoreactivities were increased in the 0 hours, 12 hours and 24 hours after reperfusion. 5. In the control group, the IPC only groups, and the pinacidil treatment only groups, negative or trace apoptotic reactions were observed, but the positive apoptotic reaction occured in the glibenclamide treatment groups. 6. Moderate or many number of apoptosis were revealed in the ischemia groups, and also the IPC and ischemia after glibenclamide pretreatment group except for 12 hours and 24 hours after reperfusion. However, the incidence of apoptosis was decreased in the ischemia after IPC groups and in the ischemia and pinacidil treatment groups. 7. There is a coincidence between the increase of Cu,Zn-SOD immunoreactivities and the decrease of apoptosis in the presence of ischemia and reperfusion. These results suggest that the protective effects of ishemic preconditioing may related to the SOD activation, and the ischemic preconditioning decreases the apoptosis partially via $K_{APT}$ channel activation in timely reperfused rat skeletal muscle. It is also suggested that inhibition of apoptosis by IPC may related with the SOD activation.

  • PDF

The Study of Hepatic Antioxidative Enzyme Activity and Eletrophoresis in Mice After Treatment with Paraquat and/(or) Ginseng Saponins (Paraquat를 투여한 생쥐 간에서 홍삼 사포닌의 항상화 효소 활성과 전기영동에 관한 연구)

  • Chun, Chul;Kim, Dong-Jo;Sung, Kum-Soo;Kim, Jong-Hwan;Kim, Ji-Sik;Chang, Che-chul
    • Journal of Ginseng Research
    • /
    • v.25 no.4
    • /
    • pp.150-155
    • /
    • 2001
  • This study examined effects of the active ingredients from ginseng on paraquat(PQ) toxitity. Mice were given PQ(25mg/kg, ip) and then they were given total saponins (TS; 5mg/kg, orally), protopanaxadiol (PD; 5mg/kg, orally) and protopanaxatriol(PT; 5mg/kg, orally) per day for periods of 1,3 & 7 days. We measured the activities of superoxide dismutase (SOD), electrophoretic isozyme band, catalase (CAT) were compared in the liver of mouse that dose with PQ and/or TS, PD and PT. The activities of SOD, CAT were generally higher in PQ+PD group than others groups. Especially the activity of SOD was the highest in PQ+PD group than others groups. SOD isozyme separated into three bands by electrophoresis. One band was located to near the anode side and two bands were cathode side. As the results of treated with KCN, we were confiremed that the Cu, Zn-SOD was located to near the anode side but the Mn-SOD were cathode side. Our results suggested that an antioxidant effect of ginseng saponins elevated a protection ability to an oxidative damage by direct action of SOD, CAT and reinforced the synthetic ability of endogenous antioxidant material in living organism. Particularly, PD was a effective antioxidant compared with others.

  • PDF

Enhanced Transduction of Cu,Zn-Superoxide Dismutase with HIV-1 Tat Protein Transduction Domains at Both Termini

  • Eum, Won Sik;Jang, Sang Ho;Kim, Dae Won;Choi, Hee Soon;Choi, Soo Hyun;Kim, So Young;An, Jae Jin;Lee, Sun Hwa;Han, Kyuhyung;Kang, Jung Hoon;Kang, Tae-Cheon;Won, Moo Ho;Cho, Yong Joon;Choi, Jin Hi;Kim, Tae Yoon;Park, Jinseu;Choi, Soo Young
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD) is responsible for highly efficient protein transduction across plasma membranes. In a previous study, we showed that Tat-Cu,Zn-superoxide dismutase (Tat-SOD) can be directly transduced into mammalian cells across the lipid membrane barrier. In this study, we fused the human SOD gene with a Tat PTD transduction vector at its N- and/or C-terminus. The fusion proteins (Tat-SOD, SOD-Tat, Tat-SOD-Tat) were purified from Escherichia coli and their ability to enter cells in vitro and in vivo compared by Western blotting and immunohistochemistry. The transduction efficiencies and biological activities of the SOD fusion protein with the Tat PTD at either terminus were equivalent and lower than the fusion protein with the Tat PTD at both termini. The availability of a more efficient SOD fusion protein provides a powerful vehicle for therapy in human diseases related to this anti-oxidant enzyme and to reactive oxygen species.