Enhanced Transduction of Cu,Zn-Superoxide Dismutase with HIV-1 Tat Protein Transduction Domains at Both Termini

  • Eum, Won Sik (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Jang, Sang Ho (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae Won (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Hee Soon (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo Hyun (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, So Young (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • An, Jae Jin (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Sun Hwa (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Han, Kyuhyung (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kang, Jung Hoon (Department of Genetic Engineering, Cheongju University) ;
  • Kang, Tae-Cheon (Department of Anatomy, College of Medicine, Hallym University) ;
  • Won, Moo Ho (Department of Anatomy, College of Medicine, Hallym University) ;
  • Cho, Yong Joon (Department of Neurosurgery, College of Medicine, Hallym University) ;
  • Choi, Jin Hi (Research Laboratory of Cell Tech. Korea) ;
  • Kim, Tae Yoon (Department of Dermatology, College of Medicine, Catholic University) ;
  • Park, Jinseu (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo Young (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University)
  • Received : 2004.10.08
  • Accepted : 2004.12.21
  • Published : 2005.04.30

Abstract

The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD) is responsible for highly efficient protein transduction across plasma membranes. In a previous study, we showed that Tat-Cu,Zn-superoxide dismutase (Tat-SOD) can be directly transduced into mammalian cells across the lipid membrane barrier. In this study, we fused the human SOD gene with a Tat PTD transduction vector at its N- and/or C-terminus. The fusion proteins (Tat-SOD, SOD-Tat, Tat-SOD-Tat) were purified from Escherichia coli and their ability to enter cells in vitro and in vivo compared by Western blotting and immunohistochemistry. The transduction efficiencies and biological activities of the SOD fusion protein with the Tat PTD at either terminus were equivalent and lower than the fusion protein with the Tat PTD at both termini. The availability of a more efficient SOD fusion protein provides a powerful vehicle for therapy in human diseases related to this anti-oxidant enzyme and to reactive oxygen species.

Keywords

Acknowledgement

Supported by : Korean Ministry of Science and Technology

References

  1. Beehler, B. C., Przybyszewski, J., Box, H. B., and Kulesz- Martin, M. F. (1992) Formation of 8-hydroxydeoxyguanosine with DNA of mouse keratinocytes exposed in culture to UVB and hydrogen peroxide. Carcinogenesis 13, 2003-2007 https://doi.org/10.1093/carcin/13.11.2003
  2. Black, H. S. (1987) Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem. Photobiol. 46, 213-221 https://doi.org/10.1111/j.1751-1097.1987.tb04759.x
  3. Bradford, M. A. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brewis, N., Phelan, A., Webb, J., Drew, J., Elliott, G., et al. (2000) Evaluation of VP22 spread in tissue culture. J. Virol. 74, 1051-1056 https://doi.org/10.1128/JVI.74.2.1051-1056.2000
  5. Caceres-Dittmar, G., Ariizumi, K., and Xu, S. (1995) Hydrogen peroxide mediates UV-induced impairment of antigen presentation in a murine epidermal-derived dendritic cell line. J. Photochem. Photobiol. 62, 176-183 https://doi.org/10.1111/j.1751-1097.1995.tb05255.x
  6. Cashman, S. M., Morris, D. J., and Kumar-Singh, R. (2003) Evidence of protein transduction but not intracellular transport by protein fused to HIV Tat in retinal cell culture and in vivo. Mol. Ther. 8, 130-142 https://doi.org/10.1016/S1525-0016(03)00131-X
  7. Choi, C., Kutsch, O., Park, J., Zhou, T., Seol, D. W., et al. (2002) Tumor necrosis factor related apoptosis inducing ligand (TRAIL) induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol. Cell. Biol. 22, 724-736 https://doi.org/10.1128/MCB.22.3.724-736.2002
  8. Cross, C. C., Halliwell, B., and Borish, E. T. (1987) Oxygen free radicals and human diseases. Ann. Intern. Med. Davis Conference 107, 526-545
  9. Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A. (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450
  10. Eum, W. S., Choung, I. S., Kim, A. Y., Lee, Y. J., Kang, J. H., et al. (2002) Transduction efficacy of Tat-superoxide dismutase is enhanced by copper ion recovery of the fusion protein. Mol. Cells 13, 334-340
  11. Eum, W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., et al. (2004a) HIV-1 Tat mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic ${\beta}$ cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349 https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  12. Eum, W. S., Kim, D. W., Hwang, I. K., Yoo, K. I., Kang, T. C., et al. (2004b) In vivo protein transduction: biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  13. Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., et al. (1994) Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664-668
  14. Floyd, R. A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4, 2587-2597
  15. Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97-112 https://doi.org/10.1146/annurev.bi.64.070195.000525
  16. Gabbianelli, R., Ferri, A., Rotilio, G., and Carri, M. T. (1999) Aberrant copper chemistry as a major mediator of oxidative stress in a human cellular model of amyotrophic lateral sclerosis. J. Neurochem. 73, 1175-1180 https://doi.org/10.1046/j.1471-4159.1999.0731175.x
  17. Gupta, A. S., Heinen, J. L., Holaday, A. S., Burke, J. J., and Allen, R. D. (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90, 1629-1633
  18. Halliwell, B. and Gutteridge, J. M. C. (1999) Free Radicals in Biology and Medicine, Oxford University Press, Oxford
  19. Han, K., Jeon, M. J., Kim, K. A., Park, J., and Choi, S. Y. (2000) Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and engrailed proteins. Mol. Cells 10, 728-732 https://doi.org/10.1007/s100590000036
  20. Han, K., Jeon, M. J., Kim, S. H., Ki, D. W., Bahn, J. H., et al. (2001) Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Mol. Cells 12, 267-271
  21. Jin, L. H., Bahn, J. H., Eum, W. S., Kwon, H. Y., Jang, S. H., et al. (2001) Transduction of human catalase mediated by an HIV-1 Tat protein basic domain and arginine rich peptides into mammalian cells. Free Radic. Biol. Med. 31, 1509-1519 https://doi.org/10.1016/S0891-5849(01)00734-1
  22. Kim, D. W., Eum, W. S., Jang, S. H., Yoon, C. S., Choi, H. S., et al. (2003) Ginsenosides enhance the transduction of Tatsuperoxide dismutase into mammalian cells and skin. Mol. Cells 16, 402-406
  23. Kim, S. J., Kim, J. E., and Moon, I. S. (2004) Paraquat induces apoptosis of cultured rat cortical cells. Mol. Cells 17, 102-107
  24. Kwon, H. Y., Eum, W. S., Jang, H. W., Kang, J. H., Ryu, J., et al. (2000) Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett. 485, 163-167 https://doi.org/10.1016/S0014-5793(00)02215-8
  25. Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., et al. (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410-414 https://doi.org/10.1038/74464
  26. Lindgren, M., Hallbrink, M., Prochiantz, A., and Langel, U. (2000) Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99-103 https://doi.org/10.1016/S0165-6147(00)01447-4
  27. Lundberg, M., Wikstrom, S., and Johansson, M. (2003) Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 8, 143-150 https://doi.org/10.1016/S1525-0016(03)00135-7
  28. McCord, J. and Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055
  29. Nagahara, H., Vocero-Akbani, A. M., Snyder, E. L., Ho, A., Latham, D. G., et al. (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4, 1449-1452 https://doi.org/10.1038/4042
  30. Park, J., Kim, K. A., Ryu, J., Choi, E. Y., Lee, K. S., et al. (2000) Generation and characterization of cell-permeable green fluorescent protein mediated by the basic domain of human immunodeficiency virus type 1 Tat. J. Microbiol. Biotechnol. 10, 797-804
  31. Park, J., Ryu, J., Jin, L. H., Bahn, J. H., Kim, J. A., et al. (2002a) 9-Polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol. Cells 13, 202-208
  32. Park, J., Ryu, J., Kim, K. A., Lee, H. J., Bahn, J. H., et al. (2002b) Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J. Gen. Virol. 83, 1173-1181
  33. Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., et al. (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590
  34. Rusnati, M., Tulipano, G., Urbinati, C., Tanghetti, E., Giuliani, R., et al. (1998) The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonist. J. Biol. Chem. 273, 16027-16037 https://doi.org/10.1074/jbc.273.26.16027
  35. Ryu, J., Han, K., Park, J., and Choi, S. Y. (2003) Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domain (PTD) at both termini. Mol. Cells 16, 385-391
  36. Ryu, J., Lee, H. J., Kim, K. A., Lee, J. Y., Lee, K. S., et al. (2004) Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat. Mol. Cells 17, 353-359
  37. Schwarze, S. R. and Dowdy, S. F. (2000) In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci. 21, 45-48 https://doi.org/10.1016/S0165-6147(99)01429-7
  38. Schwarze, S. R., Ho, A., Vocero-Akbani, A., and Dowdy, S. F. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572 https://doi.org/10.1126/science.285.5433.1569
  39. Schwarze, S. R., Hruska, K. A., and Dowdy, S. F. (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10, 290-295 https://doi.org/10.1016/S0962-8924(00)01771-2
  40. Torchilin, V. P. (2002) TAT peptide-modified liposomes for intracellular delivery of drugs and DNA. Cell. Mol. Biol. Lett. 7, 265-267
  41. Torchilin, V. P., Rammohan, R., Weissig, V., and Levchenko, T. S. (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA 98, 8786-8791
  42. Tseng, Y. L., Liu, J. J., and Hong, R. L. (2002) Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol. Pharmacol. 62, 864-872 https://doi.org/10.1124/mol.62.4.864
  43. Tyagi, M., Rusnati, M., Presta, M., and Giacca, M. (2001) Internalization of HIV-1 TAT requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. 276, 3254-3261 https://doi.org/10.1074/jbc.M006701200
  44. Vives, E., Brodin, P., and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 https://doi.org/10.1074/jbc.272.25.16010
  45. Vocero-Akbani, A., Heyden, N. A., Lissy, N. A., Ratner, L., and Dowdy, S. F. (1999) Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat. Med. 5, 29-33 https://doi.org/10.1038/4710
  46. Watson, K. and Edwards, R. J. (1999) HIV-1-trans-activating (Tat) protein: both a target and a tool in therapeutic approaches. Biochem. Pharmacol. 58, 1521-1528 https://doi.org/10.1016/S0006-2952(99)00209-9
  47. Yoon, H. Y., Lee, S. H., Cho, S. W., Lee, J. E., Yoon, C. S., et al. (2002) Tat-mediated delivery of human glutamate dehydrogenase into PC12 cells. Neurochem. Int. 41, 37-42 https://doi.org/10.1016/S0197-0186(01)00138-3