Acknowledgement
Supported by : Korean Ministry of Science and Technology
References
- Beehler, B. C., Przybyszewski, J., Box, H. B., and Kulesz- Martin, M. F. (1992) Formation of 8-hydroxydeoxyguanosine with DNA of mouse keratinocytes exposed in culture to UVB and hydrogen peroxide. Carcinogenesis 13, 2003-2007 https://doi.org/10.1093/carcin/13.11.2003
- Black, H. S. (1987) Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem. Photobiol. 46, 213-221 https://doi.org/10.1111/j.1751-1097.1987.tb04759.x
- Bradford, M. A. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
- Brewis, N., Phelan, A., Webb, J., Drew, J., Elliott, G., et al. (2000) Evaluation of VP22 spread in tissue culture. J. Virol. 74, 1051-1056 https://doi.org/10.1128/JVI.74.2.1051-1056.2000
- Caceres-Dittmar, G., Ariizumi, K., and Xu, S. (1995) Hydrogen peroxide mediates UV-induced impairment of antigen presentation in a murine epidermal-derived dendritic cell line. J. Photochem. Photobiol. 62, 176-183 https://doi.org/10.1111/j.1751-1097.1995.tb05255.x
- Cashman, S. M., Morris, D. J., and Kumar-Singh, R. (2003) Evidence of protein transduction but not intracellular transport by protein fused to HIV Tat in retinal cell culture and in vivo. Mol. Ther. 8, 130-142 https://doi.org/10.1016/S1525-0016(03)00131-X
- Choi, C., Kutsch, O., Park, J., Zhou, T., Seol, D. W., et al. (2002) Tumor necrosis factor related apoptosis inducing ligand (TRAIL) induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol. Cell. Biol. 22, 724-736 https://doi.org/10.1128/MCB.22.3.724-736.2002
- Cross, C. C., Halliwell, B., and Borish, E. T. (1987) Oxygen free radicals and human diseases. Ann. Intern. Med. Davis Conference 107, 526-545
- Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A. (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450
- Eum, W. S., Choung, I. S., Kim, A. Y., Lee, Y. J., Kang, J. H., et al. (2002) Transduction efficacy of Tat-superoxide dismutase is enhanced by copper ion recovery of the fusion protein. Mol. Cells 13, 334-340
-
Eum, W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., et al. (2004a) HIV-1 Tat mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic
${\beta}$ cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349 https://doi.org/10.1016/j.freeradbiomed.2004.04.036 - Eum, W. S., Kim, D. W., Hwang, I. K., Yoo, K. I., Kang, T. C., et al. (2004b) In vivo protein transduction: biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
- Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., et al. (1994) Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664-668
- Floyd, R. A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4, 2587-2597
- Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97-112 https://doi.org/10.1146/annurev.bi.64.070195.000525
- Gabbianelli, R., Ferri, A., Rotilio, G., and Carri, M. T. (1999) Aberrant copper chemistry as a major mediator of oxidative stress in a human cellular model of amyotrophic lateral sclerosis. J. Neurochem. 73, 1175-1180 https://doi.org/10.1046/j.1471-4159.1999.0731175.x
- Gupta, A. S., Heinen, J. L., Holaday, A. S., Burke, J. J., and Allen, R. D. (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90, 1629-1633
- Halliwell, B. and Gutteridge, J. M. C. (1999) Free Radicals in Biology and Medicine, Oxford University Press, Oxford
- Han, K., Jeon, M. J., Kim, K. A., Park, J., and Choi, S. Y. (2000) Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and engrailed proteins. Mol. Cells 10, 728-732 https://doi.org/10.1007/s100590000036
- Han, K., Jeon, M. J., Kim, S. H., Ki, D. W., Bahn, J. H., et al. (2001) Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Mol. Cells 12, 267-271
- Jin, L. H., Bahn, J. H., Eum, W. S., Kwon, H. Y., Jang, S. H., et al. (2001) Transduction of human catalase mediated by an HIV-1 Tat protein basic domain and arginine rich peptides into mammalian cells. Free Radic. Biol. Med. 31, 1509-1519 https://doi.org/10.1016/S0891-5849(01)00734-1
- Kim, D. W., Eum, W. S., Jang, S. H., Yoon, C. S., Choi, H. S., et al. (2003) Ginsenosides enhance the transduction of Tatsuperoxide dismutase into mammalian cells and skin. Mol. Cells 16, 402-406
- Kim, S. J., Kim, J. E., and Moon, I. S. (2004) Paraquat induces apoptosis of cultured rat cortical cells. Mol. Cells 17, 102-107
- Kwon, H. Y., Eum, W. S., Jang, H. W., Kang, J. H., Ryu, J., et al. (2000) Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett. 485, 163-167 https://doi.org/10.1016/S0014-5793(00)02215-8
- Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., et al. (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410-414 https://doi.org/10.1038/74464
- Lindgren, M., Hallbrink, M., Prochiantz, A., and Langel, U. (2000) Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99-103 https://doi.org/10.1016/S0165-6147(00)01447-4
- Lundberg, M., Wikstrom, S., and Johansson, M. (2003) Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 8, 143-150 https://doi.org/10.1016/S1525-0016(03)00135-7
- McCord, J. and Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055
- Nagahara, H., Vocero-Akbani, A. M., Snyder, E. L., Ho, A., Latham, D. G., et al. (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4, 1449-1452 https://doi.org/10.1038/4042
- Park, J., Kim, K. A., Ryu, J., Choi, E. Y., Lee, K. S., et al. (2000) Generation and characterization of cell-permeable green fluorescent protein mediated by the basic domain of human immunodeficiency virus type 1 Tat. J. Microbiol. Biotechnol. 10, 797-804
- Park, J., Ryu, J., Jin, L. H., Bahn, J. H., Kim, J. A., et al. (2002a) 9-Polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol. Cells 13, 202-208
- Park, J., Ryu, J., Kim, K. A., Lee, H. J., Bahn, J. H., et al. (2002b) Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J. Gen. Virol. 83, 1173-1181
- Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., et al. (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590
- Rusnati, M., Tulipano, G., Urbinati, C., Tanghetti, E., Giuliani, R., et al. (1998) The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonist. J. Biol. Chem. 273, 16027-16037 https://doi.org/10.1074/jbc.273.26.16027
- Ryu, J., Han, K., Park, J., and Choi, S. Y. (2003) Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domain (PTD) at both termini. Mol. Cells 16, 385-391
- Ryu, J., Lee, H. J., Kim, K. A., Lee, J. Y., Lee, K. S., et al. (2004) Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat. Mol. Cells 17, 353-359
- Schwarze, S. R. and Dowdy, S. F. (2000) In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci. 21, 45-48 https://doi.org/10.1016/S0165-6147(99)01429-7
- Schwarze, S. R., Ho, A., Vocero-Akbani, A., and Dowdy, S. F. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572 https://doi.org/10.1126/science.285.5433.1569
- Schwarze, S. R., Hruska, K. A., and Dowdy, S. F. (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10, 290-295 https://doi.org/10.1016/S0962-8924(00)01771-2
- Torchilin, V. P. (2002) TAT peptide-modified liposomes for intracellular delivery of drugs and DNA. Cell. Mol. Biol. Lett. 7, 265-267
- Torchilin, V. P., Rammohan, R., Weissig, V., and Levchenko, T. S. (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA 98, 8786-8791
- Tseng, Y. L., Liu, J. J., and Hong, R. L. (2002) Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol. Pharmacol. 62, 864-872 https://doi.org/10.1124/mol.62.4.864
- Tyagi, M., Rusnati, M., Presta, M., and Giacca, M. (2001) Internalization of HIV-1 TAT requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. 276, 3254-3261 https://doi.org/10.1074/jbc.M006701200
- Vives, E., Brodin, P., and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 https://doi.org/10.1074/jbc.272.25.16010
- Vocero-Akbani, A., Heyden, N. A., Lissy, N. A., Ratner, L., and Dowdy, S. F. (1999) Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat. Med. 5, 29-33 https://doi.org/10.1038/4710
- Watson, K. and Edwards, R. J. (1999) HIV-1-trans-activating (Tat) protein: both a target and a tool in therapeutic approaches. Biochem. Pharmacol. 58, 1521-1528 https://doi.org/10.1016/S0006-2952(99)00209-9
- Yoon, H. Y., Lee, S. H., Cho, S. W., Lee, J. E., Yoon, C. S., et al. (2002) Tat-mediated delivery of human glutamate dehydrogenase into PC12 cells. Neurochem. Int. 41, 37-42 https://doi.org/10.1016/S0197-0186(01)00138-3