Effect of Genistein on Activity and Expression of Antioxidant Enzyme in Hamster ovary cells

Genistein이 햄스터 난소세포의 항산화효소활성과 발현에 미치는 영향

  • Kim, Min-Hye (College of Pharmacy, Sookmyung Women's University) ;
  • Kim, An-Keun (College of Pharmacy, Sookmyung Women's University)
  • 김민혜 (숙명여자대학교 약학대학) ;
  • 김안근 (숙명여자대학교 약학대학)
  • Published : 2007.02.28

Abstract

Reactive oxygen species (ROS) are produced in the metabolic process of oxygen in cells. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cells systemize the antioxidant enzymes to control the oxidative stress. Genistein is one of the isoflavonoids, and its role in controlling cellular oxidative stress is presently the active issue at question. In this study; we analyzed genistein-induced survival rates of the CHO-K1 cells, activities of antioxidant enzymes, ROS levels, and expression levels of antioxidant enzyme genes in order to investigate the effect of genistein on cellular ROS production and antioxidative systems in CHO-K1 cells. As results, the survival rate of cells was decreased as the dose of genistein increases (12.5${\sim}$200 ${\mu}$M). Genistein increased cellular ROS levels, while it reduced total SOD activities and the expression of CuZnSOD. In conclusion, we suggest that genistein may induce oxidative stress via down-regulation of SOD.

Keywords

References

  1. Borish, E. T. and Prior, W. A. : Venuugopal SDNA synthesis is blocked by cigarette tar-induced DNA single-strand breaks. Carcinogenesis. 8, 1517 (1987)
  2. Machlin, L. J. and Bendich, A. : Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1, 441 (1987)
  3. Halliwell, B. : Free radicals in biochemistry and medicine. Encyclopedia of Molecular Biology and Molecular Medicine 2, 330 (1996)
  4. Scandalios, J. G. : Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press, Plainview, NY, USA
  5. McCord, J. M. : Superoxide, superoxide dismutase and oxygen toxicity. Reviews in Biochemical Toxicology 1, 109 (1979)
  6. Aebi, H. : Catalase in vitro. Method in Enzymology 105, 93 (1984)
  7. Paglia, D. E. and Valentine, W. N. : Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158 (1967)
  8. Wuttke, W., Jarry, H., Becker, T., Schultens, A., Christoffel, V., Gorkow, C. and Seidlova-Wuttke, D. : Phytoestrogens Endrocrine disrupters or replacement for hormone replacement therapy? Maturitas 44(Suppl 1):S9-S20 (2003) https://doi.org/10.1016/S0378-5122(02)00344-4
  9. Anderson, J. J. and Garner, S. C. : The effects of phytoestrogens on bone. Nutr. Res. 17(10), 1617 (1997)
  10. Dai, Q., Franke, A. A., Jin, F., Shu, X. O., Hebert, J. R., Custer, L. J., Cheng, J., Gao, Y. T. and Zheng, W. : Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidemiol Biomarkers Prev. 11, 815 (2002)
  11. Dalais, F. S., Rice, G. E., Murkies, A. L., Jenkins, D. J., Kendall, C. W., Jackson, C. J., Connelly, P. W., Parker, T., Faulkner, D., Vidgen, E., Cunnane, S. C., Leiter, L. A. and Josse, R. G. : Effects of high- and low-isoflavone soyfoods on blood lipids, oxidized LDL, homocysteine, and blood pressure in hyperlipidemic men and women. Am. J. Clin. Nutr. 76, 365 (2002)
  12. Jung, W., Yu, O., Lau, S. M., O'Keefe, D., Yamakoshi, J., Piskula, M. K., Izumi, T., Tobe, K., Saito, M., Kataoka, S., Obata, A. and Kikuchi M. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterolfed rabbits. J. Nutr. 130, 1887 (2000)
  13. Yamamoto, S., Sobue, T., Kobayashi, M., Sasaki, S. and Tsugane, S. : Soy, isoflavones, and breast cancer risk in Japan. J. Natl. Cancer Inst. 95, 906 (2003) https://doi.org/10.1093/jnci/95.12.906
  14. Vistica, D. T., Skehan, P., Scudiero, D., Monks, A., Pittman, A. and Boyd, M. R. : Tetrasodium-based assays for cellular viability: a critical examination of selected paramet affecting formazan production. Cancer Res. 51, 2515 (2003)
  15. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. : Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76 (1985)
  16. Martin, J. P., Dailey, M. and Sugarman, E. : Negative and Positive ass superoxide dismutase based on hematoxylin autoxidation. Arch. Biochem. Biophys. 255(2), 329 (1987)
  17. Sattler, M., Winkler, T., Verma, S., Byrne, C. H., Shrikhande, G., Salgia, R. and Griffin, J. D. : Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93, 2928 (1999)
  18. Scandalios, J. G. : Oxidative stress - molecular perception and transduction of signals triggering antioxidant gene defenses. Braz, J. Med. Biol. Res. 38, 995 (2005) https://doi.org/10.1590/S0100-879X2005000700003
  19. Mates, J. M., Perez-Gomez, C. and Nunez, de Castro, I. : Antioxidant enzymes and human disease. Clin. Biochem. 32, 595 (1999)
  20. Mossman, B. T. and Marsh, J. P. : Evidence supporting a role for active oxygen species asbestos-induced toxicity and lung disease. Environ Health Perspect 81, 91 (1989)
  21. Tniguchi, N. : Clinical significances of superoxide dismutases; Change in aging, diabetes, ischemia, and cancer. Adv. Clin. Chem. 29, 51 (1992)
  22. Van Acker, S., Van Den Berg, D. J., Tromp, M., Griffioen, D. H., Bennekom, W. P. V., Van Der Vijgh, W. J. F. and Bast, A. : Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med. 20, 331 (1996)
  23. Thompson, M. and Williams, C. R. : Stability of flavonoid complexes of copper (II) and flavonoid antioxidant activity. Anal. Chim. Acta. 85, 375 (1976)
  24. Brown, J. E., Khodr, H., Hider, R. C. and Rice-evans, c. : structural Dependence of Flavonoid Interactions with $Cu^{2+} ions$: Implications for their antioxidant properties. Biochem. J.330, 1173 (1978)
  25. Hodnick, W. F., Kalyanaraman, B., Pritsos, C. A. and Pardini, R. S. : The production of hydroxyl and semiquinone free radicals during the autoxidation of redox active flavonoids. Basic. Life. Sci. 49, 149 (1988)
  26. Roginsky, V. A., Barsukova, T. K., Remorova, A. A. and Bors, W. : Moderate antioxidative efficiencies of flavonoids during peroxidation of methyl linoleate in homogeneous and micellar solutions. J. Am. Oil Chem. Soc. 73, 777 (1996)