• 제목/요약/키워드: Crystalline PV module

검색결과 56건 처리시간 0.03초

A Review on Degradation of Silicon Photovoltaic Modules

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Zahid, Muhammad Aleem;Kim, Jaeun;Kim, Youngkuk;Cho, Sung Bae;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • 신재생에너지
    • /
    • 제17권1호
    • /
    • pp.19-32
    • /
    • 2021
  • Photovoltaic (PV) panels are generally treated as the most dependable components of PV systems; therefore, investigations are necessary to understand and emphasize the degradation of PV cells. In almost all specific deprivation models, humidity and temperature are the two major factors that are responsible for PV module degradation. However, even if the degradation mode of a PV module is determined, it is challenging to research them in practice. Long-term response experiments should thus be conducted to investigate the influences of the incidence, rates of change, and different degradation methods of PV modules on energy production; such models can help avoid lengthy experiments to investigate the degradation of PV panels under actual working conditions. From the review, it was found that the degradation rate of PV modules in climates where the annual average ambient temperature remained low was -1.05% to -1.16% per year, and the degree of deterioration of PV modules in climates with high average annual ambient temperatures was -1.35% to -1.46% per year; however, PV manufacturers currently claim degradation rates of up to -0.5% per year.

전면 액체식 흡열판을 적용한 Unglazed PVT(태양광·열) 모듈의 성능 실험연구 (The Experimental Performance of an Unglazed PV-Thermal Module with Fully Wetted Absorber)

  • 김진희;천진아;김준태
    • KIEAE Journal
    • /
    • 제11권3호
    • /
    • pp.69-73
    • /
    • 2011
  • In general, there are two types of PVT module depending on the existence of the glass in front of PV module: glazed and unglazed. On the other hand, the water-type PVT modules can be classified into two types, according to absorber type: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. The aim of this study is to analyze the electrical and thermal performance of a water-type PVT module with fully wetted absorber. For this study, a prototype of unglazed PVT module with fully wetted absorber was designed and built, and both the thermal and electrical performances of the prototype module were measured in outdoor conditions. A conventional mono-crystalline Si PV module was tested alongside the PVT module for their electrical performance comparison. The results showed that the thermal efficiency of the PVT module was average 51% and its electrical efficiency was average 14.3% in mean fluid temperature $10-40^{\circ}C$, whereas the electrical efficiency of the conventional PV module was average 12.6%. It is found that the electrical efficiency of the PVT module was improved by approximately 14% compared to that of the PV module. The temperature of PVT module becomes lower due to the cooling effect by the fluid of the absorber. The results proved that the electrical efficiency was higher when the mean fluid temperature was lower.

Heat Shocking에 의한 결정질 실리콘 Solar Cell의 출력특성 (The Characteristic of Crystalline Si Solar Cell by Heat Shocking)

  • 신준오;정태희;김태범;강기환;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.246-250
    • /
    • 2009
  • String & tabbing step in the crystalline PV module manufacturing process for the temperature directly affects solar cells. In fact, in the manufacture of PV modules tend to be temperature factor and the corresponding changes n the output shows the same characteristics. In this journal, it will be considered about thermal characteristics, especially changes of characteristic in high temperature of the solar cell through experiment that we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. And we can think about the possibility of efficiency improvements over looks in PV module manufacturing processes.

  • PDF

Enhance photoelectric efficiency of PV by optical-thermal management of nanofilm reflector

  • Liang, Huaxu;Wang, Baisheng;Su, Ronghua;Zhang, Ao;Wang, Fuqiang;Shuai, Yong
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.475-485
    • /
    • 2022
  • Crystalline silicon photovoltaic cells have advantages of zero pollution, large scale and high reliability. A major challenge is that sunlight wavelength with photon energy lower than semiconductor band gap is converted into heat and increase its temperature and reduce its conversion efficiency. Traditional cooling PV method is using water flowing below the modules to cool down PV temperature. In this paper, the idea is proposed to reduce the temperature of the module and improve the energy conversion efficiency of the module through the modulation of the solar spectrum. A spectrally selective nanofilm reflector located directly on the surface of PV is designed, which can reflect sunlight wavelength with low photon energy, and even enhance absorption of sunlight wavelength with high photon energy. The results indicate that nanofilm reflector can reduce spectral reflectivity integral from 9.0% to 6.93% in 400~1100 nm wavelength range, and improve spectral reflectivity integral from 23.1% to 78.34% in long wavelength range. The nanofilm reflector can reduce temperature of PV by 4.51℃ and relatively improved energy conversion efficiency of PV by 1.25% when solar irradiance is 1000 W/m2. Furthermore, the nanofilm reflector is insensitive in sunlight's angle and polarization state, and be suitable for high irradiance environment.

결정질 태양전지의 Micro-crack 패턴에 따른 PV모듈의 전기적 특성에 관한 연구 (A Study on the Electrical Characteristics of Photovoltaic Module Depending on Micro-Crack Patterns of Crystalline Silicon Solar Cell)

  • 송영훈;강기환;유권종;안형근;한득영
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.407-412
    • /
    • 2012
  • This study investigated the process of thermal-induced growth of micro-crack developed at the crystalline solar cell using EL image, determined the output characteristic according to the pattern of micro-crack, analyzed the I-V characteristic according to the pattern of crack growth, and predicted the output value using simulation. The purpose of this study was, therefore, to investigate the process of thermal-induced growth of micro-crack developed at the early stage of PV module completion using EL image, to analyze the resulting decrement of output and predict the output value using simulation. It was observed that the crack grew increasingly by the thermal condition, and accordingly the lowering of output was accelerated. The output values of crack patterns with various direction were predicted using simulation, resulting in close I-V curve with only around 4% of error rate. It is considered that it is possible to predict the electric characteristic of solar cell module using only pattern of micro-crack occurred at solar cell based on our results.

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

Optimal Design of PV Module with Bypass Diode to Reduce Degradation due to Reverse Excess Current

  • Jung, Tae-Hee;Kang, Gi-Hwan;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.279-283
    • /
    • 2014
  • In this paper, we present an economical and practical standard to install a bypass diode in a thin-film PV module. This method helps to reduce heat generation and to prevent module degradation due to excess current from reverse bias. The experimental results confirm that for different numbers of solar cells, there is a relation between the excess reverse current and the degradation of solar cells in a-Si:H modules. The optimal number of solar cells that can be connected per bypass diode could be obtained through an analysis of the results to effectively suppress the degradation and to reduce the heat generated by the module. This technique could be expanded for use in high power crystalline Si PV modules.

태양전지모듈적용 투명유리의 광특성 분석 (The Analysis of Optical Characteristics of Glasses for PV Module Application)

  • 김경수;강기환;유권종
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.98-103
    • /
    • 2008
  • The glass for crystalline PV module fabrication should have high thermal and mechanical resistance to environmental also have high transparency. In this paper, we analyze the optical characteristics of glasses for photovoltaic module application. The transmittance of several glasses are measured. The effects of texturing on low iron glass, glass thickness, anti-reflective glass, photocatalyst-treated glass and special glass are compared each other. Then this will give some information to select PV glass for manufacturing. The detailed analysis is described in the following paper.

  • PDF

음영효과를 고려한 a-Si PV모듈의 출력 변화 및 최적 설계조건에 관한 연구 (Analysis of Power Variation and Design Optimization of a-Si PV Modules Considering Shading Effect)

  • 신준오;정태희;김태범;강기환;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.102-107
    • /
    • 2010
  • a-Si solar cell has relatively dominant drift current when compared with crystalline solar cell due to the high internal electric field. Such drift current make an impact on the PV module in the local shading. In this paper, the a-Si PV module output characteristics of shading effects was approached in terms of process condition, because of the different deposition layer of thin film lead to rising the resistance. We suggested design condition to ensure the long-term durability of the module with regard to the degradation factors such as hot spot by analyzing the module specification. The result shows a remarkable difference on module uniformity for each shading position. In addition, the unbalanced power loss due to power mismatch of each module could intensify the degradation.

IEC61215을 통한 PV모듈 내구성 평가 및 분석 (Durability Determination and Analysis during IEC61215 PV Module Test)

  • 김경수;강기환;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1061_1061
    • /
    • 2009
  • Running low of fossil fuel energy forces the industry to find a new way to overcome this energy crisis. One of the solutions is using the unlimited and everlasting energy sources like wind, sun, water, and so on. Especially, sun energy becomes the hottest issue in recent years because of its merit in installation, operation and abundant material source of silicon. In 2008, about 5.5GW photovoltaic (PV) system has been installed all around world. Many professional renewable energy organizations expect that the total PV system installation will be 30GW. To sustain the long-term stability of the PV system, several institutes perform the test based on IEC standards like IEC 61215 for silicon crystalline PV module and IEC 61646 for thin film PV module. Also in South Korea, Korea Institute of Energy Research (KIER) performs the certificate test according to IEC 61215 standards. In this paper, we want to summarize and inform the 3 years‘ test results of domestic and foreign PV modules. The specific and technical explanation will be shown in the following paper in detail.

  • PDF