• Title/Summary/Keyword: Crushability

Search Result 13, Processing Time 0.026 seconds

A Crushability Index of Sands Using Particle Strengths and Compressibility Characteristics (흙입자 강도와 압축특성을 이용한 모래의 파쇄성 지표)

  • 곽정민
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.205-215
    • /
    • 1999
  • Crushable sandy soil grounds are widely found along the coast throughout the world. The ground composed of lime sand, which is characterized by the material with high compressibility due to particle crushing contains carbonate calcium. In this study, in order to clarify the characteristics of the particle crushing as related to the strength and deformation properties of sands, isotropic compression test was carried out on three different types of carbonate sands and a silica sand. A crushability index, K, is proposed in connection with the yielding and particle crushing stress of sands at various relative densities under isotropic compression. It is concluded that the representative crushability index, K, associated with the soil particle strength, can be a key factor in preliminary parameters in evaluating soil crushability.

  • PDF

The study on the Crushability of Weathered Cranite Soils (화강암질 풍화토의 파쇄성에 관한 연구)

  • 도덕현;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-103
    • /
    • 1979
  • The weathered granite soil involves problems in its stability in soil structures depending upon the reduction of soil strength due to the water absorption, crushability, and content of colored mineral and feldspar. As an attemt to solve the problems associated with soil stability, the crushability of weathered granite soil was investigated by conducting tests such as compaction test, CBR test, unconfined compression test, direct shear test, triaxial compression test, and permeability test on the five soil samples different in weathering and mineral compositions. The experimental results are summarized as follows: The ratio of increasing dry density in the weathered granite soil was high as the compaction energy was low, while it was low as the compaction energy was increased. The unconfined compressive strength. and CBR value were highest in the dry side rather than in the soil with the optimum moisture content, when the soil was compacted by adjusting water content. However, the unconfined compressive strength of smples, which were compacted and oven dried, were highest in the wet side rather than in soil with the optimum moisture content. As the soil becomes coarse grain, the ratio of specific surface area increased due to increased crushability, and the increasing ratio of the specific surface area decreased as the compaction energy was increased. The highest ratio of grain crushability was attained in the wet side rather than in the soil with the optimum moisture content. Such tendency was transforming to the dry side as the compaction energy was increased. The effect of water on the grain crushability of soil was high in the coarse grained soil. The specific surface area of WK soil sample, when compacted under the condition of air dried and under the optimum moisture content, was constant regardless of the compaction energy. When the weathered granite soil and river sand with the same grain size were compacted with low compaction energy, the weathered granite soil with crushability had higher dry density than river sand. However, when the compaction energy reached to certain point over limitation, the river sand had higher dry density than the weathered granite soil. The coefficient of permeability was lowest in the wet side rather than in the optimum moisture content, when the soil was compacted by adjusting soil water content. The reduction of permeability of soil due to the compaction was more apparent in the weathered granite soil than in the river sand. The highly significant correlation coefficient was obtained between the amount of particle breakage and dry density of the compacted soil.

  • PDF

A Basic Study on Crushability of Sands and Characteristics of Particle Strength (모래의 파쇄성과 단입자강도 특성에 관한 기초적 연구)

  • 곽정민
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.193-204
    • /
    • 1999
  • Particle crushing is an important and essential factor in interpreting the strength and deformation properties of granular materials in the case of geotechnical problems related to soil crushability. As a recent field problem, the exploitation of offshore oil reserves in tropical and sub-tropical coastal shelf areas has shown that the behaviour of soils containing carbonates is markedly different from predominantly silica sands. In this study, as a first step in making a mechanical framework of granular materials incorporating the soil crushability, single particle fragmentation tests were carried out on four different types of sands in order to clarify the characteristics of the single particle fragmentation strength as related to soil crushability. The single particle strength was considered with the influence of the particle shapes, the amount of mineral components and the particle sizes. The soil particle strength corresponding $D_{50}$ of soil distribution curve has shown the lower value, the more the carbonate component and the more angular the particle shape.

  • PDF

Dynamic Shear Modulus of Crushable Sand (잘 부서지는 모래의 동적전단탄성계수)

  • 윤여원
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.67-80
    • /
    • 1992
  • In the analysis of dynamic problem, determination of mazimun shear modulus is essential for the estimation of shear stress at any strain level. Although many models for silica sands were presented, the direct accomodation of those models to crushable sand would be difficult because of crushability during torsion. In this research dynamic behaviour of tested sand is presented. The shear modulus of loose crushable sand shows similar results to silica sand. However, as the density of crushable sand increases the shear modulus decreases because of crushability by increasing surface contact area. And modulus number is expressed in terms of state parameter by Been and Jefferies (1965).

  • PDF

A Study on pH Reduction of Recycled Aggregates Using Coffee Waste and Its Crushability (커피박을 이용한 순환골재의 pH 저감 및 파쇄성 연구)

  • Lee, Young-Jae;Lee, Dong-Yun;Chen, KeQiang;Kim, Moon-Gi;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.21-29
    • /
    • 2016
  • In this study, recycled aggregates crushed from waste concrete were sorted into three groups, 10-13 mm, 13-20 mm, and 20-25 mm. They were treated in different ways and then their crushability was evaluated for each treatment. Coffee waste was used for reducing their pH level. The pH of recycled aggregate was almost 11, regardless of aggregate sizes. The pH of coffee waste was nearly 5 and 10, 30, or 50 g of coffee waste was mixed with 1000 ml of distilled water and recycled aggregates. The lowest pH was about 6.2 when 50 g of coffee waste was mixed. Aggregates were treated with microwave or soaked for 1 day in vinegar (pH = 2) for neutralization reaction. Microwave treated and neutralized aggregates showed 3.3% and 6.2% higher crushing values compared to non-treated one, respectively. Neutralized treatment was more effective for crushing. In crushing tests, a sample height of 120 mm was tried, which gave 6.3% higher crushing value. A four stepped loading with each 100 kN gave 7.1% higher crushing value, compared to standard 100 mm height and 400 kN continuous loading.

Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study

  • Ma, Gang;Chang, Xiao-Lin;Zhou, Wei;Ng, Tang-Tat
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.317-333
    • /
    • 2014
  • The study of the mechanical behavior of rockfill materials under three-dimensional loading conditions is a current research focus area. This paper presents a microscale numerical study of rockfill deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). Two features unique to this study are the consideration of irregular particle shapes and particle crushability. A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy behavior is described using a linear dilatancy equation with its material constants varying with the intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely describes the stress points at failure.

Characteristics of Crushed Oyster-shell as a Substitute of Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 재료로서 파쇄 굴패각의 특성조사)

  • 윤길림;윤여원;채광석;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.281-290
    • /
    • 2003
  • In order to investigate recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including permeability, confined compression and shear strength of crushed oyster shell were quantitatively examined in terms of fineness modulus and relative density of crushed oyster-shell. Experimental results show that the crushed oyster-shells are lighter than sand in weight, and have similar characteristics on permeability and shear strength to sandy soils. The oyster-shell can be considered as highly crushable material but not much crushable with existing high loads. Based on the laboratory test results, it is highly fudged that the crushed oyster-shell can be a substitute of sand as SCP materials.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

Experimental Study on the Engineering Characteristics of Weathering Mudstone -In Pohang area- (이암 황화토의 공학적 특성에 관한 실험적 연구 -포항지역의 이암봉화토를 중심으로-)

  • 김영수;박강우
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.5-16
    • /
    • 1994
  • This paper is concerned with the engineering characteristics weathered mudstone soil in Pohang area. The crushability of weathered Boil can be described in terms of the ratio of surface area(Sw'/Sw). In this study, the characteristics of weathered mudstone soil was investigated by performing teat such as compaction. CBR, permeability, and grain size according to compaction energy. The results are found as follows : (1) In generally, the specific gravity of weathered mudstone soil is very small and optimum moisture content (OMC) is large and maximum dry density is small (2) The CBR value increases as the compaction energy increases, but this value decreses from D -2 compaction(26kg.cm/cm3). the swelling ratio increases the npaction energy to 20.6kg.cm/cm" and decreases in all compaction energy from 20.6kg.cm/cm3 (3) As the compaction energy is small, the change of permeability due to water content is large and the difference between minimum coefficient of permeability and coefficient of permeability at OMC is large, but the difference is small as the compaction energy increases (4) The decrease of permeability due to the decrease of void ratio and the increase of ratio of surface area is caused by the crush of particle due to the increase in compaction energy. Especially, the compaction energy is smaller, the change of the ratio of surface area to the coefficient of permeability is larger.rger.

  • PDF

Permeability Effect of Decomposed Granite Soil under the Influence of Crushability and Compaction Energy (화강풍화토(花崗風化土)의 파쇄(破碎) 및 다짐에너지가 투수성(透水性)에 미치는 영향(影響))

  • Lee, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 1983
  • This paper is concerned with the permeability through a decomposed granite soil layer which is influnced by change of grain sizes and crushed soils made by varied compaction energy. The change in the content of crushed soils can be described in terms of the ratio of surface area ($S_w{^{\prime}}/S_w $). The experiments were carried out to obtain the relationships of the coefficient of permeability(K) versus the optimum moisture content($w_{opt}$) by the variable head permeability test with the samples that were preapared by compaction test. The results are found as follows; (1) By the change in compaction energy, the crush ratio increased whereas the void ratio decreased with a larger maximum dry density running in parallel with the zero air void curve. (2) The ratio of surface area was $0.33(P)^{0.96}$ in $S_w{^{\prime}}/S_w $ with no relation to the compaction energy. (3) The grain size which produced the largest crush of soil particles ranged from 0.5 to 1 millimetre (4) The relationship of K versus $e^3$/1+e appeared as a straight line on the full-log-scale paper under the optimum moisture state. (5) As the compaction energy was larger, the passing percentage of #200-sieve grains increased linearly. The increment in the surface area ratio was deemed to have been caused by the decreased in the permeability.

  • PDF