• Title/Summary/Keyword: Cross-linked Structure

Search Result 105, Processing Time 0.022 seconds

A Study on the Development of Ship's Stern Tube Sealing System(II) -Based on Face Seals- (선미관 밀봉장치의 개발에 관한 연구 (II) -풰이스 시일을 중심으로-)

  • 김영식;전효중;왕지석;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.5
    • /
    • pp.47-54
    • /
    • 1991
  • The lip seals widely used nowadays in stern tube sealing system of ships have radial sealing contact with shafts or liners, on the other hand the face seals of stern tube sealing system have axial sealing contact with seat. Because of axial sealing contact, the face seals have a large number of merits such as durability of life, simplicity of structure, easy fitting and replacement, etc. In this paper, for the purpose of development of face seals, the fundamental properties of axial sealing contact were analyzed and a trial face seal was designed and manufactured using N.B.R. rubber and Thordon which is widely used for bearing materials. The seal proper of trial face seal was made from N.B.R. rubber and the face insert was made from Thordon, thermosetting resins which are three dimensional, cross linked condensation polylmers. The performance test of trial face seal was carried out on the test bench which was specially designed and manufactured. The results were satisfactory enough to be used in practical stern tube sealing system.

  • PDF

수송기계 엔진 MEMS 용 SiCN 마이크로 구조물 제작

  • Jeong, Jun-Ho;Jeong, Gwi-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.14-17
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar Optimum pyrolysis and anneal ins conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excel lent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition.

  • PDF

Reaction Characteristics and Catalytic Stability for the Methanol Conversion over ZSM-5 Catalyst (ZSM-5 촉매상에서 메탄올의 전환반응, 반응특성과 안정성)

  • Sang Eon Park;Hak Ze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.172-176
    • /
    • 1981
  • The formation of $C_2-C_{10}$ hydrocarbons from methanol over shape-selective ZSM-5 zeolite catalysts is studied. It seems that $C_2-C_5$ olefins formed from methanol via dimethylether are transformed further to higher hydrocarbons containing higher concentration of aromatics by the acid sites of ZSM-5. Unique cross linked channel structure and its hydrophobicity seems to be mainly responsible for its high activity of ZSM-5 catalyst for the conversion of methanol.

  • PDF

Sensor Mat using POF for Medical Application (의료용 플라스틱광섬유 센서 매트)

  • Choi, Kyoo-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.363-365
    • /
    • 2007
  • Novel concept of sensor mat and its signal processing method is proposed for patient monitoring in medical application. Proposed sensor mat structure has sensing inner layer which has cross-linked arrangement using plastic optical fiber(POF). Large core diameter of plastic optical fiber behaved as band pass filter by averaging the noise component. caused by unwanted environmental factors. Signal processor followed by sensor output added noise immune performance by filtering out unwanted component. Fail-proof patient breath monitoring scheme was realized by using intelligent decision algorithm. Unlike the conventional approach by using mechanical sensor, which have high sensitivity both to intruder and to environmental noise, our approach provided reliable breath motion detection.

  • PDF

Preparation and Evaluation of Gelatin-Acacia Microcapsules of Sulfamethoxazole

  • Yoo, Bong-Gyu;Lee, Min-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.4
    • /
    • pp.112-125
    • /
    • 1982
  • Sulfamethoxazole particles were microencapsulated using the gelatin-acacia complex coacervation method. Micromeritic properties and dissolution characteristics of the microcapsules were studied. The particle size distribution followed log-normal form. As the hardening time increased, the particle size and wall thickness increased ($45.3-52.0\;{\mu}m$, $2.02-5.12\;{\mu}m$, respectively). This is considered to be due to the cross-linked wall structure of formalized microcapsules which prevents shrinking of gelatin during the dehydration and drying processes. An increase of hardening time clearly delayed the release rate. The in vitro 50% dissolution time $(t_{50})$ for unencapsulated sulfamethoxazole powder was less than 3 min.; for microcapsules hardened for 30 min, the $t_{50}$ was 20.1 min.; for those hardened for 60 min. the $t_{50}$ was 25.0 min.; for those hardened for 120 min., the $t_{50}$ was 35.8 min. The surface of the unhardened microcapsules was smooth and had no cracking or pore penetration. However, the surface of the hardened microcapsules was folded and invaginated.

  • PDF

Development of Prefabricated Joint for 66kV Cross Linked Polyethylene Cable. (66kV XLPE Cable용 조립형 접속함의 개발)

  • Oh, E.J.;Kim, K.Y.;Lee, J.Y.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2123-2125
    • /
    • 1999
  • In recent the XLPE cable has been applied more widely because of its advantages, such as the low-cost and simple installation. For a prefabricated joint, its working time is short, its jointing procedures aγe simple, and its quality control is easy. Electrical performance targets of our developed 66kV cable accessories has been approved through the type test in accordance with IEC publication 840. This paper describes the developmental effort in terms of the design, structure and results of performance verification tests for 66kV XLPE cable system.

  • PDF

Development of Prefabricated Joint for 132kV Cross Linked Polyethylene Cable (132kV XLPE CABLE 조립형 접속함의 개발)

  • Kim, J.H.;Oh, E.J.;Kim, K.Y.;Park, J.K.;Jeong, Y.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2017-2019
    • /
    • 2000
  • In recent the XLPE cable has been applied more widely because of its advantages, such as the low-cost and simple installation. For a prefabricated joint, its working time is short, its jointing procedures are simple, and its quality control is easy. Electrical performance targets of our developed 132kV cable accessories has been approved through the type test in accordance with IEC publication 840. This paper describes the developmental effort in terms of the design, structure and results of performance verification tests for 132kV XLPE cable system.

  • PDF

A SMA-based morphing flap: conceptual and advanced design

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.555-577
    • /
    • 2015
  • In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely "cells", connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic "X" configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.

Effect of Ohmic Heating on Pasting Property of Starches (옴가열이 전분의 Pasting 특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.689-695
    • /
    • 2017
  • Ohmic heating is an internal heating method based on the principle that when an electrical current passes through food, electric resistance heat is uniformly generated internally by food resistance. Previous studies indicate that the thermal properties, external structure, internal structure, and swelling power of ohmic heat treated starch of various starches, such as potato, wheat, corn, and sweet potato, differed from those of conventional heating at the same temperature. In this study, the pasting property of starch, treated with ohmic and conventional heating, were measured by RVA (Rapid Visco-Analyzer). Our results show that as the ohmic heating temperature increased, the PV (Paste Viscosity) of the starch decreased significantly, and the PT (Pasting Temperature) increased. Changes in PV and PT indicate that the swelling of starch remains unchanged by ohm heating. The HPV (Hot Paste Viscosity), CPV (Cold Paste Viscosity) and SV (Setback Viscosity) of ohmic heated starch also differed from the conventional heated starch. The pasting property is similar to the viscosity curve of common cross-linked modified starch. In this experiment, we further confirm the similarity with modified starch and its usability.

A Study on the molecular structure and molecular weight control of styrene films by plasma polymerization (플라즈마 중합법에 의한 스티렌 박막의 분자 구조 및 분자량 제어에 관한 연구)

  • 김종택;최충양;박종관;박응춘;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.213-219
    • /
    • 1997
  • The plasma polymerized styrene films were prepared by using an inter-electrode capacitively coupled gas-flow-type reactor, and the effects of plasma polymerization condition on the molecular weight distribution were investigated by Fourier Transform Infrared (FT-IR), Pyrolysis Gas Chromatography(PyGC), Differential Scanning Calorimetry(DSC) and Gel Permeation Chromatography(GPC). From the above results, the very cross-linked films different from chemical characteristics of the starting monomer were taken out, and it is realized that the molecular structure, cross linking density, and molecular weight distribution could be controlled by changing the parameters such as deposition pressure, deposition power and gas flow rate. Accordingly, it is suggested that plasma polymerization method performed by inter-electrode capacitively coupled gas-flow-type reactor has good characteristics for manufacturing the functional organic thin films which can be applied in sensors, opto-electric device, photo-resist by changing the polymerization parameters.

  • PDF