• 제목/요약/키워드: Cross-entropy algorithm

검색결과 36건 처리시간 0.02초

혼합 교차-엔트로피 알고리즘을 활용한 다수 에이전트-다수 작업 할당 문제 (Multi Agents-Multi Tasks Assignment Problem using Hybrid Cross-Entropy Algorithm)

  • 김광
    • 한국산업정보학회논문지
    • /
    • 제27권4호
    • /
    • pp.37-45
    • /
    • 2022
  • 본 논문에서는 대표적인 조합 최적화(combinatorial optimization) 문제인 다수 에이전트-다수 작업 할당 문제를 제시한다. 할당 문제의 목적은 각 작업의 달성률(achievement rate)의 합을 최대로 하는 에이전트-작업 할당을 결정하는 것이다. 달성률은 각 작업의 할당된 에이전트의 수에 따라 아래 오목 증가(concave down increasing)형태로 다루어지며, 본 할당 문제는 비선형(non-linearity)의 목적함수를 갖는 NP-난해(NP-hard) 문제로 표현된다. 본 논문에서는 할당 문제를 해결하기 위한 효과적이면서 효율적인 문제 해결 방법론으로 혼합 교차-엔트로피 알고리즘(hybrid cross-entropy algorithm)을 제안한다. 일반적인 교차-엔트로피 알고리즘은 문제 상황에 따라 느린 매개변수 업데이트 속도와 조기수렴(premature convergence)이 발생할 수 있다. 본 연구에서 제안하는 문제 해결 방법론은 이러한 단점의 발생 확률을 낮추도록 설계되었으며, 실험적으로도 우수한 성능을 보이는 알고리즘임을 수치실험을 통해 제시한다.

Q-learning 알고리즘이 성능 향상을 위한 CEE(CrossEntropyError)적용 (Applying CEE (CrossEntropyError) to improve performance of Q-Learning algorithm)

  • 강현구;서동성;이병석;강민수
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.

Tri-training algorithm based on cross entropy and K-nearest neighbors for network intrusion detection

  • Zhao, Jia;Li, Song;Wu, Runxiu;Zhang, Yiying;Zhang, Bo;Han, Longzhe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3889-3903
    • /
    • 2022
  • To address the problem of low detection accuracy due to training noise caused by mislabeling when Tri-training for network intrusion detection (NID), we propose a Tri-training algorithm based on cross entropy and K-nearest neighbors (TCK) for network intrusion detection. The proposed algorithm uses cross-entropy to replace the classification error rate to better identify the difference between the practical and predicted distributions of the model and reduce the prediction bias of mislabeled data to unlabeled data; K-nearest neighbors are used to remove the mislabeled data and reduce the number of mislabeled data. In order to verify the effectiveness of the algorithm proposed in this paper, experiments were conducted on 12 UCI datasets and NSL-KDD network intrusion datasets, and four indexes including accuracy, recall, F-measure and precision were used for comparison. The experimental results revealed that the TCK has superior performance than the conventional Tri-training algorithms and the Tri-training algorithms using only cross-entropy or K-nearest neighbor strategy.

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

부배열 평균과 엔트로피 최소화 기법을 이용한 stepped-frequency ISAR 자동초점 기법 성능 향상 연구 (Application of Subarray Averaging and Entropy Minimization Algorithm to Stepped-Frequency ISAR Autofocus)

  • 정호령;김경태;이동한;서두천;송정헌;최명진;임효숙
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 춘계학술대회 논문집
    • /
    • pp.158-163
    • /
    • 2008
  • In inverse synthetic aperture radar (ISAR) imaging, An ISAR autofocusing algorithm is essential to obtain well-focused ISAR images. Traditional methods have relied on the approximation that the phase error due to target motion is a function of the cross-range dimension only. However, in the stepped-frequency radar system, it tends to become a two-dimensional function of both down-range and cross-range, especially when target's movement is very fast and the pulse repetition frequency (PRF) is low. In order to remove the phase error along down-range, this paper proposes a method called SAEM (subarray averaging and entropy minimization) [1] that uses a subarray averaging concept in conjunction with the entropy cost function in order to find target motion parameters, and a novel 2-D optimization technique with the inherent properties of the proposed entropy-based cost function. A well-focused ISAR image can be obtained from the combination of the proposed method and a traditional autofocus algorithm that removes the phase error along the cross-range dimension. The effectiveness of this method is illustrated and analyzed with simulated targets comprised of point scatters.

  • PDF

A Modified Error Function to Improve the Error Back-Propagation Algorithm for Multi-Layer Perceptrons

  • Oh, Sang-Hoon;Lee, Young-Jik
    • ETRI Journal
    • /
    • 제17권1호
    • /
    • pp.11-22
    • /
    • 1995
  • This paper proposes a modified error function to improve the error back-propagation (EBP) algorithm for multi-Layer perceptrons (MLPs) which suffers from slow learning speed. It can also suppress over-specialization for training patterns that occurs in an algorithm based on a cross-entropy cost function which markedly reduces learning time. In the similar way as the cross-entropy function, our new function accelerates the learning speed of the EBP algorithm by allowing the output node of the MLP to generate a strong error signal when the output node is far from the desired value. Moreover, it prevents the overspecialization of learning for training patterns by letting the output node, whose value is close to the desired value, generate a weak error signal. In a simulation study to classify handwritten digits in the CEDAR [1] database, the proposed method attained 100% correct classification for the training patterns after only 50 sweeps of learning, while the original EBP attained only 98.8% after 500 sweeps. Also, our method shows mean-squared error of 0.627 for the test patterns, which is superior to the error 0.667 in the cross-entropy method. These results demonstrate that our new method excels others in learning speed as well as in generalization.

  • PDF

밝기변화 보상을 적용한 효율적인 비디오 코딩 알고리즘 (An Efficient Video Coding Algorithm Applying Brightness Variation Compensation)

  • 김상현
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.287-293
    • /
    • 2004
  • 본 논문은 밝기 변화가 심한 비디오 시퀀스에 대해 효율적인 움직임 보상 알고리즘을 제안한다. 제안한 알고리즘에서는 화면간의 밝기 변화 변수들을 추정하고 지역적인 움직임 보상을 수행한다. 밝기 변화가 심한 화면을 검출하기 위해 연속되는 두 프레임간의 히스토그램의 크로스 엔트로피를 계산하여 밝기 변화가 심한 화면을 그렇지 않은 화면과 나누어 밝기 변화가 심하지 않은 경우에 발생할 수 있는 불필요한 계산량을 줄였다. 밝기 변화가 심한 비디오 시퀀스에 대한 실험결과 제안한 알고리즘은 기존의 알고리즘에 비해 적은 계산량으로 높은 PSNR (peak signal to noise ratio) 성능을 나타내었다.

  • PDF

에어 택시 이용률 최대화를 위한 수직이착륙장 위치 결정 문제 (Vertiport Location Problem to Maximize Utilization Rate for Air Taxi)

  • 김광
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.67-75
    • /
    • 2023
  • 본 논문에서는 도시 내 교통 혼잡 문제를 해결하기 위한 새로운 혁신 기술 중 하나인 에어 택시 운영에 관한 연구를 다룬다. 성공적인 기술 도입과 합리적인 운영을 위해 초기에 고려해야 할 문제 중 하나인 수직이착륙장(vertiport) 위치 결정 문제를 다룬다. 교통수단 이용에 따른 비용과 이동시간을 고려하여 각 경로에서의 교통수단 예측 수요 확률을 이산 선택 모형을 활용하여 구하고, 이를 반영하여 에어 택시 이용률의 최대화를 목적으로 하는 수리적 모형을 제안한다. 본 수리적 모형은 NP-난해(NP-hard) 문제로, 위치 결정 문제를 해결하기 위한 효과적이면서 효율적인 문제 해결방법론이 필요하다. 단순히 최적화 모형을 제안한 기존 연구와 달리 본 연구에서는 교차-엔트로피 알고리즘(cross-entropy algorithm)을 활용한 문제 해결 방법론을 제안하고, 수치 실험을 통해 알고리즘의 효과성과 효율성을 확인한다. 문제 해결 방법론의 학술적 우수성 외에도, 실제 데이터 및 에어 택시 활용 계획을 고려한 의사결정의 제시는 실무적인 활용 가능성을 높일 수 있음을 시사한다.

Adaptive Multi-class Segmentation Model of Aggregate Image Based on Improved Sparrow Search Algorithm

  • Mengfei Wang;Weixing Wang;Sheng Feng;Limin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.391-411
    • /
    • 2023
  • Aggregates play the skeleton and supporting role in the construction field, high-precision measurement and high-efficiency analysis of aggregates are frequently employed to evaluate the project quality. Aiming at the unbalanced operation time and segmentation accuracy for multi-class segmentation algorithms of aggregate images, a Chaotic Sparrow Search Algorithm (CSSA) is put forward to optimize it. In this algorithm, the chaotic map is combined with the sinusoidal dynamic weight and the elite mutation strategies; and it is firstly proposed to promote the SSA's optimization accuracy and stability without reducing the SSA's speed. The CSSA is utilized to optimize the popular multi-class segmentation algorithm-Multiple Entropy Thresholding (MET). By taking three METs as objective functions, i.e., Kapur Entropy, Minimum-cross Entropy and Renyi Entropy, the CSSA is implemented to quickly and automatically calculate the extreme value of the function and get the corresponding correct thresholds. The image adaptive multi-class segmentation model is called CSSA-MET. In order to comprehensively evaluate it, a new parameter I based on the segmentation accuracy and processing speed is constructed. The results reveal that the CSSA outperforms the other seven methods of optimization performance, as well as the quality evaluation of aggregate images segmented by the CSSA-MET, and the speed and accuracy are balanced. In particular, the highest I value can be obtained when the CSSA is applied to optimize the Renyi Entropy, which indicates that this combination is more suitable for segmenting the aggregate images.

A3C를 활용한 블록체인 기반 금융 자산 포트폴리오 관리 (Blockchain Based Financial Portfolio Management Using A3C)

  • 김주봉;허주성;임현교;권도형;한연희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권1호
    • /
    • pp.17-28
    • /
    • 2019
  • 금융투자 관리 전략 중에서 여러 금융 상품을 선택하고 조합하여 분산 투자하는 것을 포트폴리오 관리 이론이라 부른다. 최근, 블록체인 기반 금융 자산, 즉 암호화폐들이 몇몇 유명 거래소에 상장되어 거래가 되고 있으며, 암호화폐 투자자들이 암호화폐에 대한 투자 수익을 안정적으로 올리기 위하여 효율적인 포트폴리오 관리 방안이 요구되고 있다. 한편 딥러닝이 여러 분야에서 괄목할만한 성과를 보이면서 심층 강화학습 알고리즘을 포트폴리오 관리에 적용하는 연구가 시작되었다. 본 논문은 기존에 발표된 심층강화학습 기반 금융 포트폴리오 투자 전략을 바탕으로 대표적인 비동기 심층 강화학습 알고리즘인 Asynchronous Advantage Actor-Critic (A3C)를 적용한 효율적인 금융 포트폴리오 투자 관리 기법을 제안한다. 또한, A3C를 포트폴리오 투자 관리에 접목시키는 과정에서 기존의 Cross-Entropy 함수를 그대로 적용할 수 없기 때문에 포트폴리오 투자 방식에 적합하게 기존의 Cross-Entropy를 변형하여 그 해법을 제시한다. 마지막으로 기존에 발표된 강화학습 기반 암호화폐 포트폴리오 투자 알고리즘과의 비교평가를 수행하여, 본 논문에서 제시하는 Deterministic Policy Gradient based A3C 모델의 성능이 우수하다는 것을 입증하였다.