Application of Subarray Averaging and Entropy Minimization Algorithm to Stepped-Frequency ISAR Autofocus

부배열 평균과 엔트로피 최소화 기법을 이용한 stepped-frequency ISAR 자동초점 기법 성능 향상 연구

  • Published : 2008.03.21

Abstract

In inverse synthetic aperture radar (ISAR) imaging, An ISAR autofocusing algorithm is essential to obtain well-focused ISAR images. Traditional methods have relied on the approximation that the phase error due to target motion is a function of the cross-range dimension only. However, in the stepped-frequency radar system, it tends to become a two-dimensional function of both down-range and cross-range, especially when target's movement is very fast and the pulse repetition frequency (PRF) is low. In order to remove the phase error along down-range, this paper proposes a method called SAEM (subarray averaging and entropy minimization) [1] that uses a subarray averaging concept in conjunction with the entropy cost function in order to find target motion parameters, and a novel 2-D optimization technique with the inherent properties of the proposed entropy-based cost function. A well-focused ISAR image can be obtained from the combination of the proposed method and a traditional autofocus algorithm that removes the phase error along the cross-range dimension. The effectiveness of this method is illustrated and analyzed with simulated targets comprised of point scatters.

Keywords