• Title/Summary/Keyword: Critical properties

Search Result 2,261, Processing Time 0.029 seconds

Determination of Frequency Independent Critical Concentration of Xathan and Carob Mixed Gels

  • Yoon, Won-Byong;Gunasekaran, Sundaram
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1069-1071
    • /
    • 2007
  • The frequency independent critical concentration (Cc) of xanthan and carob (X/C) mixed gel was determined based on the Winter-Chambon's theory. X/C mixed (X/C=1:1 ratio) gels were prepared from 0.1 to 1% of concentration. The linear viscoelastic properties, i.e., storage and loss modulus, of X/C mixed gel at $20^{\circ}C$ were measured by frequency sweep tests. The frequency independence of tangent function of phase angle (tan ${\delta}$) of X/C mixed gels was graphically determined from the intersection of the plot of phase angle against concentration at varied frequencies. The intersection (C=0.43%) was considered to be Cc of X/C mixed gel.

Uniform deformation and Critical Current properties of 500 m class Bi-2223/Ag HTS tapes (500 m급 Bi-2223/Ag 고온초전도 선재의 균일 가공 및 임계전류 특성)

  • 이동훈;양주생;최정규;윤진국;황선역;김상철;하홍수;하동우;오상수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.85-87
    • /
    • 2003
  • Intermediate annealing was carried out during wire drawing for uniform deformation of 500 m class Bi-2223/Ag HTS tapes. Wire drawing force was measured to evaluate the uniformity of wire deformation along the length. To prevent sausage and filament breakage of wire, drawing stress was controlled below 200 MPa by using intermediate annealing process. Thickness and width of the rolled tapes was measured 0.23 mm and 4.1 mm with low deviation $\pm$ 0.08 mm and $\pm$ 0.09 mm, respectively. The critical current of the 500 m tapes was measured 33.7 A $\pm$ 3.7 A by continuous critical current measurement system.

  • PDF

On the Absorbing Sets of the Regular LDPC Codes with Variable Node Degree Three (변수노드의 차수가 3인 정칙 LDPC 부호의 Absorbing 집합에 관하여)

  • Lee, Ki-Jun;Chung, Ha-Bong;Jang, Hwan-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.937-945
    • /
    • 2009
  • In this paper, we investigate into the existence and various properties of absorbing sets in regular LDPC codes with variable node degree three. Also, we figure out the critical number of some absorbing sets that are believed to be the major cause of error floor in (3,5) Tanner LDPC codes.

Fabrication Technology of high Tc Superconductor for Electrical Equipment (전력기기 초전도 합성기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.364-366
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

스테인레스강 저주기 피로 수명 분포의 추계적 모델링

  • 이봉훈;이순복
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.213-222
    • /
    • 2000
  • In present study, a stochastic model is developed for the low cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In present study, a critical plane method proposed by Kandil et al., maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good accordance with experimental results.

  • PDF

Properties of a HTS magnet consisting of pancake windings by using the E-J method

  • Kim, Young-Min;Kang, Myung-Hun;Paik, Kyoung-Ho;Cha, Guee-Soo;Jeon, Chang-Wan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.26-29
    • /
    • 2011
  • In a High temperature superconducting (HTS) tape with high aspect ratio, the magnetic field applied to the HTS tape can be different considerably within the HTS tape. The current distribution in the HTS tape is generally non-uniform because the current distribution is strongly dependent on the applied magnetic field. Non-uniform current distribution in a HTS tape has not been properly considered when the critical current has been estimated. This paper shows the calculation of critical current of a HTS magnet consisting of pancake windings. Non-uniform distribution of current in the HTS tape is considered during the calculation of the critical current. Results of calculation show the current concentrated in the middle part of the HTS tape which is used for one pancake winding.

Classical shell theory for instability analysis of concrete pipes conveying nanofluid

  • Keikha, Reza;Heidari, Ali;Hosseinabadi, Hamidreza;Haghighi, Mohammad Salkhordeh
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2018
  • This paper deals with the instability analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The fluid is mixed by $AL_2O_3$ nanoparticles where the effective material properties of fluid are obtained by mixture rule. The applied force by the internal fluid is calculated by Navier-Stokes equation. The structure is simulated by classical cylindrical shell theory and using energy method and Hamilton's principle, the motion equations are derived. Based on Navier method, the critical fluid velocity of the structure is calculated and the effects of different parameters such as fluid velocity, volume percent of nanoparticle in fluid and geometrical parameters of the pipe are considered. The results present that with increasing the volume percent of nanoparticle in fluid, the critical fluid velocity increase.

Aeroelastic behavior of nano-composite beam-plates with double delaminations

  • Mousavi, S.B.;Yazdi, Ali A.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.653-661
    • /
    • 2019
  • In this paper aeroelastic behavior of 3-phase nano-composite beam-plate with double delaminations is investigated. It is tried to study the effect of carbon nano-tubes (CNTs) on critical flutter pressure of reinforced damaged nano-composite structures. In this case, the CNTs are appending to the polymer matrix uniformly. The Eshelby-Mori-Tanaka model is used to obtain the effective material properties of 3-phase nano-composite beam-plate. To investigate the aeroelastic behavior of delaminated beam-plate subjected to supersonic flow, it is assumed that the damaged segments are forced to vibrate together. The boundary conditions and auxiliary conditions at edges of delaminated segments are used to predict critical flutter pressure. The influence of CNTs and different delamination parameters such as delamination length, axial position and its position through thickness are investigated on critical flutter pressure.

The effect of non-homogeneity on the stability of laminated orthotropic conical shells subjected to hydrostatic pressure

  • Zerin, Zihni
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.89-103
    • /
    • 2012
  • In this study, the stability of laminated homogeneous and non-homogeneous orthotropic truncated conical shells with freely supported edges under a uniform hydrostatic pressure is investigated. It is assumed that the composite material is orthotropic and the material properties depend only on the thickness coordinate. The basic relations, the modified Donnell type stability and compatibility equations have been obtained for laminated non-homogeneous orthotropic truncated conical shells. Applying Galerkin method to the foregoing equations, the expression for the critical hydrostatic pressure is obtained. The appropriate formulas for the single-layer and laminated, cylindrical and complete conical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, effects of non-homogeneity, number and ordering of layers and variations of shell characteristics on the critical hydrostatic pressure are investigated.

Study on the Wrinkling Prediction in Sheet Metal Stamping Processes (박판 스탬핑 공정의 주름발생 예측에 관한 연구)

  • 황보원;금영탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.131-142
    • /
    • 2001
  • A wrinkling is the instability phenomenon influenced by material properties, shape geometry, forming conditions, stress state, etc. The wrinkling is considered as a critical defect in appearance of product. Many wrinkling prediction methods using thickness strain distribution and farming analysis have been proposed. The wrinkling, however, is not easily predicted precisely by these methods. In this study, the region in the biaxial plane stress state is modeled with a rectangular plate introducing the effective dimension, and critical stress values for the wrinkling are calculated. Prediction index for the wrinkling is then evaluated by normalizing the actual stress with respect to the critical stress. In order to show the validity and efficiency of the method proposed, the wrinkling prediction for a squared sheet in the uniaxial tensile stress and auto-body front finder panel is performed.

  • PDF